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We determine from first-principles the finite-temperature properties—linewidths, line shifts, and
lifetimes—of the key vibrational modes that dominate inelastic losses in graphitic materials. In
graphite, the phonon linewidth of the Raman-active E2g mode is found to decrease with temper-
ature; such anomalous behavior is driven entirely by electron-phonon interactions, and does not
appear in the nearly-degenerate infrared-active E1u mode. In graphene, the phonon anharmonic
lifetimes and decay channels of the A′1 mode at K dominate over E2g at Γ and couple strongly with
acoustic phonons, highlighting how ballistic transport in carbon-based interconnects requires careful
engineering of phonon decays and thermalization.

PACS numbers: 71.15.Mb, 63.20.Kr, 78.30.Na, 81.05.Uw

Carbon nanotubes and graphene nanoribbons are in-
tensely studied as candidates for future electronic and
optoelectronic devices. In particular, metallic tubes have
some of the highest current densities reported in any ma-
terial [1] and could lead to extremely promising appli-
cations as electrical interconnects. However, in carbon
nanotubes or graphite, high currents [2, 3, 4] or optical
excitations [5, 6] can induce a non-thermal phonon dis-
tribution, with significant overpopulation of the optical
phonons E2g at Γ and A′1 at K. These hot phonons de-
velop because of a slower anharmonic decay rate with re-
spect to the generation rate [4], and cause a significant re-
duction of the ballistic conductance of carbon nanotubes
at bias potentials larger than ∼ 0.2 V, severely limit-
ing interconnect performance [1, 2, 3, 4]. A microscopic
characterization of phonon decays [7] is thus a key step
in improving the transport properties of these materials,
whereas engineering individual decay channels would al-
low to control energy relaxation and ultimately perfor-
mance.

Information on the phonon scattering mechanisms can
be obtained from Raman or infra-red (IR) measurements
of the linewidths and line shifts of the phonon modes [8].
Indeed, the intrinsic linewidth γin in a defect-free sam-
ple is γin = γep + γpp, where γep and γpp represent the
electron-phonon (EP) and anharmonic phonon-phonon
(PP) interactions [9, 10]. The shift with temperature of
the harmonic phonon frequencies is also due to PP in-
teractions [8, 11, 12]. While experimental measurements
are now available on graphene, graphite and carbon nan-
otubes, their interpretation is not always straightfor-
ward. For example, graphene has a E2g at Γ Raman-
active mode (the G band) with a linewidth of ∼ 13
cm−1 [13]. In graphite this phonon splits in two nearly-
degenerate modes: the Raman-active E2g and the IR-
active E1u [14]. The linewidth of the Raman-active mode
(11.5 cm−1 [15]) remains similar to that of graphene,
suggesting a negligible effect of the interactions among

different graphitic planes. On the other hand, IR mea-
surements show that the linewidth of the E1u mode is
much smaller (∼4 cm−1 [14]). The finite-temperature
line shift of E2g is also puzzling: recent experimental re-
sults have shown very little difference between graphite
and graphene [16], while first-principles calculations find
a room-temperature in-plane thermal expansion coeffi-
cient for graphene more than three times as large as that
of graphite (both are negative) [17]. Prompted by these
results, and by the central role played by phonon decays
in controlling inelastic losses, we characterize here the
EP and PP scattering parameters of the E2g, E1u and
A′1 modes in graphite or graphene using state-of-the-art
first-principles calculations. These parameters are then
used to compute the linewidths and line shifts of the Ra-
man and IR bands, and the PP decay lifetimes.

All the calculations are performed using density-
functional theory (DFT) and density-functional per-
turbation theory (DFPT) [18] as implemented in the
PWSCF package of the Quantum-ESPRESSO dis-
tribution [19]. We use the local-density approxima-
tion [20], norm-conserving pseudopotentials [21] and a
plane-wave expansion up to a 55 Ry cut-off. Brillouin-
zone sampling is performed on 32×32×8 and 32×32×1
Monkhorst-Pack meshes for graphite and graphene, with
a Fermi-Dirac smearing in the electronic occupations of
0.02 Ry. For graphite, the equilibrium lattice parameters
a = 2.43 Å and c/a = 2.725 are used [17]; for graphene,
an interlayer spacing of 7 Å is adopted. The DFT ac-
curacy in calculating vibrational properties in graphite
even in the presence of van der Waals interactions is dis-
cussed in Ref. [17]. The phonon frequencies, dynami-
cal matrices, and EP matrix elements are obtained us-
ing DFPT. The phonon anharmonic self-energy is given,
at the lowest order in the perturbative expansion with
respect to the atomic mass, by the tadpole, loop and
bubble diagrams [22] corresponding to three- and four-
phonon scattering terms. Thus, we calculate the third-
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FIG. 1: Total linewidths (solid line) for the E2g and E1u

modes in graphene and graphite and their EP (γep, dashed
line) and PP (γpp, dotted line) contributions, together with
the results of Eq. 2 (circles). Measurements from Refs. [13,
14, 15]

.

and fourth-order derivatives of the total energy with re-
spect to atomic displacements; the former are obtained
from DFPT [18, 23], while the latter from finite differ-
ences over the relevant phonon eigenvectors. The dynam-
ical matrices are computed on a 16×16×1 or a 8×8×4
mesh (for graphene and graphite, respectively), higher-
order derivatives on 4×4×1 or 4×4×2 meshes. Fourier
interpolation [18] then provides all these quantities on
finer grids (200×200×50 and 200×200×1 for graphite
and graphene), over which we perform all numerical in-
tegrations.

At the lowest order, a phonon acquires a finite
linewidth by decaying into two lower-energy phonons
(γpp) or by creating an electron-hole pair (γep). The
PP contribution γpp is given by the imaginary part of
the phonon self-energy Π [8, 22], which is determined by
3-phonon scattering processes. In the electron-hole cre-
ation process, a phonon with wavevector q excites an
electronic state |ki〉 with wavevector k into the state
|(k + q)j〉. The scattering probability is thus given by
the EP coupling matrix element g(k+q)j,ki [24]. Accord-
ing to the Fermi golden rule [25]

γep
q (T ) =

4π
Nk

∑
k,i,j

|g(k+q)j,ki|2[fki(T )− f(k+q)j(T )]×

δ[εki − ε(k+q)j + ~ωq], (1)

where ωq is the phonon frequency, the sum is on Nk k
vectors, fki(T ) is the Fermi-Dirac occupation at temper-
ature T for an electron with energy εki, and δ is the
Dirac delta [26] (throughout the paper we will consider

full-width at half-maximum (FWHM) linewidths).
We report in Fig. 1 the linewidths for the E2g and

E1u modes in graphite and graphene, computed accord-
ing to the aforementioned procedure. Very good agree-
ment is found with respect to measurements [13, 14, 15].
More importantly, our calculations show that the phonon
linewidth for the E2g mode, and its dependence on tem-
perature, is completely dominated by the EP coupling,
with a decreasing linewidth as a function of temperature.
This effect is due to the strong T dependence of γep,
which is only partially compensated by γpp.

In order to rationalize this result, we consider a sim-
plified model for the temperature dependence of γep for
the E2g modes: we assume a linearized band disper-
sion around the Fermi energy (εF ) and a model EP cou-
pling [24]. It can be easily shown (e.g. following Eq. 3
in Ref. [15]) that at finite T

γep(T ) = γep(0)
[
f

(
− ~ω0

2kBT

)
− f

(
~ω0

2kBT

)]
, (2)

where, from DFT, γep(0) = 11.01 cm−1 [15],
~ω0=196 meV is the E2g phonon energy, kB is the Boltz-
mann constant and f(x) = 1/[exp(x) + 1]. Eq. 2 repro-
duces very well the full calculation of Eq. 1 (see Fig. 1)
and can be used to understand the temperature depen-
dence of γep(T ), since this is now proportional to the
difference between the occupations of states below and
above εF . As T increases, the occupation of filled states
below εF decreases, while the empty states are occupied
more, resulting in the observed decrease of γep(T ) with
temperature.

It is important to note that γep(0) for the E1u mode
in graphite is almost five times smaller than for the
case of E2g. This difference can be understood by de-
composing Eq. 1 in parallel and perpendicular contribu-
tions, where k⊥ is the component perpendicular to the
graphene planes and k‖ is the in-plane projection. We
define γ(k⊥) as the contribution to the EP linewidth ob-
tained from Eq. 1 when restricting the k-point integra-
tion on those vectors k that satisfy ĉ · k = k⊥, where ĉ
is the unit vector perpendicular to the graphene planes.
With such definition γep =

∫ 1

0
γ(k⊥) dk⊥, where k⊥ is

in units of π/c. The electronic states with a non-zero
contribution to Eq. 1 are those allowed by energy con-
servation and by a non-zero EP coupling. Energy con-
servation alone selects the four π bands near the Fermi
level (labeled 1 to 4, from the lowest to the highest, in
Fig. 2). For the E1u mode the computed EP coupling al-
lows mainly transitions from band 1 to 3 and from band
2 to 4. Since the minimum gap between bands 1 and 3
(and 2 and 4) varies considerably as a function of k⊥,
and the IR transition satisfies energy conservation only
for k⊥ & 0.8 (Fig. 2), we have a small γep for this mode.
On the contrary, for the E2g mode the EP coupling al-
lows mainly transitions from band 1 to 4 and from band 2
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FIG. 2: EP coupling contributions to the linewidths (γep) of
the E2g (Raman active) and E1u (IR active) Γ modes. Upper
panel: the four π bands of graphite. Lower panel: Decompo-
sition of γep into the different k⊥ contributions.

FIG. 3: Line shifts for the E2g Γ phonons in graphene and
graphite: total shift, ∆ω, solid lines (see footnote [31] for a
polynomial fit to ∆ω); 3-phonon, 4-phonon and thermal ex-
pansion contributions, dotted, dashed and dot-dashed lines,
respectively. At 0 K, the 3-phonon and 4-phonon contribu-
tions for graphite (graphene) are -14.06 cm−1 and 1.30 cm−1

(-14.02 cm−1 and 3.03 cm−1), respectively. Experimental
data for graphite (+, Ref. [28] and×, Ref. [29]) are also shown.

to 3; energy-conservation means that only the transition
between 2 and 3 is essentially active. Since the minimum
gap between bands 2 and 3 is always zero, the transition
is active for any k⊥. It turns out that γE2g

(k⊥) is almost
a constant and its value is similar to that of graphene
(Fig. 2) and much larger than that for the IR-active mode
(γep

E2g
∼ 5γep

E1u
). Interstingly, the IR-active mode of a

graphene bilayer should have a vanishing γep, since the
bilayer bands are very similar to those of graphite with
k⊥ = 0.

The temperature-dependent line shift is another quan-
tity that is easily accessible by e.g. Raman spectroscopy,
and that provides powerful information on the anhar-
monicity. The PP contribution to line shifts is given by

the real part of the self-energy Π [22]; as mentioned be-
fore, at the lowest order this includes both 3-phonon and
4-phonon scattering terms. A further contribution de-
scends straightforwardly from the lattice thermal expan-
sion, that is especially large and negative in graphene
[17]. This contribution is obtained by computing the
harmonic frequency at the lattice parameter appropri-
ate to the given temperature, obtained within the quasi-
harmonic approximation [17]. Within the present ap-
proach the EP contribution to the frequency shift is taken
into account exactly (within DFT) in the harmonic fre-
quencies [18].

Fig. 3 shows our computed line shifts for the E2g

mode [27]. The results are in good agreement with avail-
able experiments [28, 29], and in excellent agreement
with recent measurements for graphite and graphene
[16]. In both cases the frequencies shift down with
temperature—an unusual result for an optical mode
where the bond-bond distances are predicted to become
shorter with temperature. In reality, lattice contraction
does provide the expected upward shift—and a much
larger one for graphene than for graphite. Still, the
overall behavior is dominated by a downshift driven by
the 4-phonon scattering term, almost two times stronger
in graphene than in graphite (Fig. 3). Thus, while
the individual anharmonic contributions in graphite and
graphene are quite different, the E2g line shifts are al-
ways downwards (driven by the 4-phonon contributions)
and very similar in the two systems thanks to the com-
pensation between different but opposite contributions.

Finally, we focus on the analysis of the anharmonic
phonon decay processes. We show in Fig. 4 the anhar-
monic phonon lifetimes (τ = 1/γpp) and the decay chan-
nels for the modes E2g at Γ and A′1 at K in graphene—
these are the two modes with the strongest EP cou-
pling, and the ones that will be overpopulated during
steady-state operation in an interconnect [4] (the results
for graphite are very similar, see Fig. 1). The values
obtained are of the same order of the optical-phonon
thermalization time (7 ps) estimated in graphite from
time-resolved terahertz spectroscopy [5]. This result is
also in agreement with the empirical choice of Ref. [4]
where the experimental I-V characteristic of metallic-
tube interconnects was modeled by a coupled Boltzmann
transport equation for phonons and electrons, assuming
τΓ = τK ∼ 5 ps. The values of τΓ and τK that we obtain
from first-principles confirm this assumption, but pro-
vide much needed novel insight on the relative relevance
of the different decay processes. In particular, it is found
that τK > τΓ (Fig. 4); in addition, since the EP cou-
pling for the K mode is stronger than for Γ [4], we find
that the phonon population at K will be dominant in de-
termining inelastic losses, with the high-bias resistivity
due to scattering with K phonons. Moreover, τK has a
large decay channel towards low-energy acoustic phonon
modes (Fig. 4, bottom right panel) that is not available
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FIG. 4: (Color online) Upper left panel: computed PP life-
time of the E2g and A′1 modes of graphene. We also report the
computed lifetimes (300 K) of the other modes at Γ and K.
Upper right panel: probability per unit time (300 K) that the
E2g mode at Γ decays into two phonons of wavevectors q and
−q. Upper part of the lower panel: schematic representation
of the different PP decay channels for the modes E2g at Γ
(left) and A′1 at K (right). Below, probability per unit time
γ̃ that the E2g or the A′1 modes (of frequency ω0) decay into
two modes of frequencies ω and ω0-ω. The relative weight of
the decay channels is also reported.

to Γ phonons. This means that a strong temperature-
dependence is present in the typical operation range of
100-500 K, and that the population of acoustic phonons
can strongly affect hot phonons and transport properties.
Since acoustic phonons have a lower thermal-impedance
mismatch with the substrate, it is expected that efficient
thermalization strategies should focus on engineering the
optimal coupling with the substrate. The present re-
sults and inclusion of acoustic phonons in the model of
Ref. [4] should provide a realistic ab-initio description of
the coupled electronic and thermal dynamics in carbon
nanostructures [30].

In conclusion, we have presented a detailed analysis
of anharmonic effects in graphene and graphite, based
on the explicit calculation of the PP and EP interac-
tions within DFPT. Excellent agreement with experi-
mental results—where available—is found. We have ex-
plained the large differences in the linewidths for the
closely related Raman and IR G-bands in graphite, and
the closely similar line shifts for the G-band in graphene
and graphite, notwithstanding very different thermal-
expansion parameters. Moreover, the anomalous de-
crease of the Raman G-band linewidth with tempera-

ture, predicted for both graphene and graphite, is ratio-
nalized through its dominant EP contribution; the neg-
ative dependence on temperature is accurately captured
by a simple phenomenological expression. The PP de-
cay channels for the critical vibrational excitations that
limit ballistic transport have been identified, with funda-
mental consequences in understanding and engineering
electronic transport in metallic nanotubes and graphene
ribbons interconnects.
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