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Controlled coupling of counterpropagating whispering-gallery modes by a single

Rayleigh scatterer: a classical problem in a quantum optical light
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We present experiments where a single subwavelength scatterer is used to examine and control
the back-scattering induced coupling between counterpropagating high-Q modes of a microsphere
resonator. Our measurements reveal the standing wave character of the resulting symmetric and
antisymmetric eigenmodes, their unbalanced intensity distributions, and the coherent nature of their
coupling. We discuss our findings and the underlying classical physics in the framework common to
quantum optics and provide a particularly intuitive explanation of the central processes.

The radiative properties of atoms can be strongly mod-
ified by coupling them to resonators [1]. A historical
corner stone of this field of research, known as Cavity
Quantum Electrodynamics (CQED), was set in 1946 by
E. M. Purcell who proposed that the radiation rate of
an oscillating dipole at wavelength λ can be enhanced
by a factor F = 3Qλ3/4π2Vm in a resonant cavity of
quality factor Q and mode volume Vm [1]. This so-
called Purcell effect holds in the dissipative weak cou-
pling regime where the cavity finesse is small so that the
atomic radiation remains dominated by its coupling to
the bath of the electromagnetic modes. In the strong

coupling regime, coherent exchange of energy between
the atom and the resonator causes the atomic resonance
to lose its identity and to become replaced by a doublet.
These phenomena have been studied for more than three
decades [2, 3, 4, 5] although the in-situ manipulation of
a single emitter in a single mode of a high-Q microres-
onator remains a challenge [4, 5]. In this Letter, we con-
sider the controlled coupling of a classical nano-object to
a high-finesse whispering-gallery mode (WGM) microres-
onator. We discuss both theoretically and experimentally
the resulting coherent coupling between two degenerate
counterpropagating WGMs and the modification of the
Rayleigh scattering rate. Our findings show that the con-
cepts of the strong and weak coupling play a central role
even in this fully classical system.
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FIG. 1: a) Whispering gallery modes of a microsphere are
excited via a prism. A glass fiber tip can be positioned in
(r, θ, φ) close to the sphere surface. The resonator spectrum
can be recorded on PD1 in transmission, on PD2 from global
scattering out of the sphere via a multimode fiber, and on
PD3 through the fiber tip. b) An example of the doublet
spectrum recorded on PD2.

The resonators in our work consist of microspheres
melted at the end of silica fibers [6]. Such spheres support
very high-Q WGMs and have been studied by several
groups [7, 8, 9]. About ten years ago, it was discovered
that the high-Q resonances of these cavities are often
composed of doublets [10]. Such a mode splitting has
been since discussed in conjunction with various WGM
resonators [8, 9, 11, 12, 13]. It turns out that mode
splitting has been observed in other ring resonators and
has been explained as the result of the coupling between
the electric fields Ec and Ecc of the degenerate clockwise
(c) and counter clockwise (cc) modes via back scattering.
The new superpositions states (+) and (−) are described
by

E+ = aEc + bEcc ; E− = aEc − bEcc. (1)

Here a and b are complex coefficients. In the simplest
case, the coupling between Ec and Ecc can be caused
by a reflector [14, 15]. In the case of WGM resonators,
however, it has been suggested that backscattering from
a distribution of residual subwavelength inhomogeneities
in the glass matrix or on its surface is the source of
this coupling [8, 9, 10]. The orders of magnitude of
the doublet splitting can be correctly estimated from
classical electrodynamic considerations following this hy-
pothesis [8, 9, 10, 12, 13, 16]. Nevertheless, the direct
link between the spectral features of a doublet and the
nanoscopic details of the backscattering sources has not
been demonstrated experimentally, and a proper treat-
ment of the losses inflicted by the scatterers is missing
in the literature. In fact, an intuitively perplexing and
interesting question arises in this context: given that the
radiation of a subwavelength scatterer is nearly isotropic
and that the angle subtended by a typical cavity mode is
merely about 10−4 rad [17], how could the rate of scat-
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tering back into a cavity mode dominate the rate of scat-
tering out of the resonator to ensure the population of
E+ and E−?

The schematics of our experimental arrangement is
shown in Fig. 1a. A narrow-band diode laser (λ =
670 nm, linewidth < 300 kHz, tuning range ≈ 60 GHz)
was used to excite the WGMs via a prism. Photode-
tector PD1 was used to record spectra in transmission
through the prism whereas PD2 captured the light glob-
ally scattered out of the microsphere into a multimode
fiber. Figure 1b displays a typical doublet with a splitting
of 29 MHz and Q ≃ 8× 107 recorded on PD2. The peaks
represent the intensities |E+|2 and |E−|2 of the symmet-
ric and antisymmetric eigenmodes. Following the proce-
dure described in Ref. [18], we applied scanning near-field
optical microscopy (SNOM) to map the spatial intensity
distribution of the WGMs on PD3 and to identify the
fundamental mode of the resonator, which exhibits a sin-
gle intensity maximum in the r and θ directions. In our
previous works, we have shown that an uncoated glass
tip might broaden and shift cavity modes depending on
theirQ and on the tip size [19]. Here we demonstrate that
a subwavelength tip can modify or induce the coupling
between the degenerate c and cc microsphere modes.

Equation (1) implies that the interference between the
c and cc running modes should give rise to sine and co-
sine standing waves along the equator. The locations of
the nodes and antinodes of E+ and E− are automatically
established by the random distribution of a large number
of inhomogeneities in the silica sphere [9, 10]. To visu-
alize this effect, we have scanned a sharp fiber tip along
the equator (i.e. in the φ direction) of an already split
fundamental WGM and have recorded spectra at each
point (note that the radial coordinate of the tip is kept
constant using a shear-force feedback [18]). Figure 2a
shows that the intensities of the two peaks of a doublet
undergo out of phase periodic modulations as a function
of the tip location. A slight slope of the middle base line
is attributed to a drift in the shear-force tip-sphere stabi-
lization. At location (i), the tip is positioned in the node
of the symmetric mode and the antinode of the antisym-
metric mode. Thus, it induces loss in the E+ mode while
it leaves E− nearly unaffected. Position (iii) shows the
opposite counterpart of (i) whereas at position (ii) both
modes are affected equally strongly.

As shown in Fig. 2b, the three spectra reveal that
in addition to a change in the intensity balance of the
doublets, their splittings are also modified. Figure 2d
displays the modulation of the splitting about its initial
value of 24 MHz shown by the dotted line. Interestingly,
we find that the tip can not only increase the mode split-
ting, but it can also decrease it. This is due to a destruc-
tive interference between the field scattered by the tip
and the field scattered by the inhomogeneities in the mi-
crosphere that gave rise to the initial splitting. Figures 2e
and f provide further data on the increase and decrease
of the mode splitting as the tip was scanned in the θ di-
rection for two different φ positions spaced by half of the
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FIG. 2: a) The intensities of the two peaks in a doublet as
a function of the tip position along the equator. The dotted
line marks the slight intensity drift in the detection. b) Spec-
tra recorded at positions (i-iii) in Fig. (a). The spectra are
displaced vertically for clarity. c) Simultaneously measured
spectra on PD2 and PD3. d) The recorded splitting corre-
sponding to the data in Fig. (a). The solid curve shows a
sinusoidal fit. e) and f) The variations of the mode splitting
as a function of the tip in the θ direction for positions (i) and
(iii), respectively. The solid curves display fits according to
the spatial mode function of the fundamental WGM.

interference period along the equator. Finally, Fig. 2c
plots the resonance spectra recorded simultaneously on
PD2 and PD3, i.e. via global scattering from the sphere
and via the fiber tip. The different lineshapes on the two
channels might seem unexpected at first. However, this
effect shows that if the tip is placed in an antinode of E−

or E+, it efficiently extracts photons out of that mode,
leading to a larger signal in the fiber tip and thus a lower
intensity in the cavity mode. On the contrary, the mode
that is less perturbed is stronger in the resonator and
is nearly uncoupled to the fiber tip. It is evident that
the mode that is coupled to the tip has experienced an
additional broadening.

We now show that the radiation properties of a sub-
wavelength object such as its scattering rate are modified
much in the same manner as those of the spontaneous
emission of an atom. Our guiding thought is that many
central features of CQED, including the modification of
the mode density in a resonator, can be traced to the spa-
tial character of the modes and should be thus shared by
classical cavity electrodynamics. We first present a sim-
ple treatment of the free-space Rayleigh scattering using
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a semi-quantum electrodynamic (semi-QED) approach,
where the material scatterer is treated classically while
the field is quantized. Then we will discuss the modifica-
tion of the scattering rate when the scatterer is coupled
to a resonator.
Let us assume that a freely propagating photon is

incident on a subwavelength spherical scatterer of ra-
dius a and refractive index n. We take the photon to

be in a mode Êk with volume Vk, frequency ωk and a
linear polarization along the unit vector ǫk such that

Êk = Ekǫk(â†k + âk) where â†k and âk are the usual cre-

ation and annihilation operators and Ek =
√
h̄ωk/2ǫ0Vk.

In the limit where the scatterer is considerably smaller
than λ, it can be described by a dipolar polarizability
α [20] so that the induced dipole moment operator reads

p̂k = ε0αEk(â†k + âk)ǫk. Thus the interaction energy be-

tween this dipole moment and another mode Êj becomes,

V̂k,j = −p̂k · Êj = h̄gkj(â
†
kâj + â†j âk) (2)

if we neglect the terms that do not conserve photon
numbers. Here we have taken gkj = −α

√
ωkωj |ǫ∗j ·

ǫk|/2
√
VkVvac and have set Vj = Vvac for all vacuum

modes j into which the incident beam is scattered. The
system Hamiltonian becomes [21]

Ĥ = h̄ωkâ
†
kâk+

∑

j

h̄ωj â
†
j âj+

∑

j

h̄gkj(â
†
kâj+â†jâk), (3)

leading to the Heisenberg equation of motion

i ˙̂ak = ωkâk +
∑

j

gkj âj . (4)

The last term in Eq. (4) signifies the scattering of the
incident field into all vacuum modes. Following the
Weisskopf-Wigner formalism [22], we find the rate

ΓR =
2ω2

kVvac

3πc3
g2R =

α2ω2
k

6πc3Vk

(5)

for this scattering event [21]. Here we have restricted
ourselves to ωk = ωj for elastic scattering and have used
the notation gR = −αωk/2

√
VkVvac. Now we can cal-

culate the Rayleigh scattering cross section σR [20] by
considering the total power radiated by the scatterer ac-
cording to IincσR = h̄ωkΓR. Given that Iinc = h̄ωkc/Vk

and α = 4πa3|n2−1
n2+2

|, one obtains the well-known relation

σR =
8πk4a6

3

∣∣∣∣
n2 − 1

n2 + 2

∣∣∣∣
2

. (6)

We note that a rigorous quantum optical treatment of
scattering is not frequently discussed in the literature [23]
and goes beyond the scope of this paper. However, the
fact that σR can be derived via the Weisskopf-Wigner
formalism using quantized fields provides a robust sup-
port for the intuitive expectation that a modification of

the mode density, for example in a resonator or in front
of a mirror, could also lead to a change in the Rayleigh
scattering rate. The corresponding Purcell effect offers a
physical explanation for the question posed earlier. The
rate with which energy is transferred from Ec to Ecc is
enhanced by F and is given by ηF where η is the ge-
ometric factor determining the fraction of the solid an-
gle subtended by the mode. Therefore, a fundamental
WGM with Vm ≃ 130µm3 (sphere diameter 30µm) and
Q = 108 yields F ∼ 104, compensating for the very small
geometric acceptance of the order of 10−4. The influ-
ence of the Purcell factor F also explains why reducing
the cavity Q results in the disappearance of light in the
counterpropagating mode as reported previously [10].

FIG. 3: a) The mode splitting measured as a function of
sphere-tip separation in the r direction. b) Plot of the mea-
sured splitting versus the additional tip-induced broadening.
The solid curve displays the fit to a quadratic function.

Having shown that the density of states plays a cen-
tral role in the description of Rayleigh scattering, next
we consider the coupling of two counterpropagating cav-

ity modes Ec and Ecc via a single Rayleigh scatterer.
The details of the calculations are provided in the sup-
plementary materials of this paper [21]. Returning to a
classical notation, we find

˙̃E− = (−i∆− γ0) Ẽ− + κ0

˙̃E+ = (−i∆+ 2ig − γ0 − Γ) Ẽ+ + κ0.
(7)

Here we have defined Ẽ = eiωtE, ∆ = ω − ωc shows the
detuning of the laser frequency ω, κ = κ0e

iωt is the mode
excitation rate, and 2γ0 denotes the unperturbed cavity
linewidth. When dealing with Rayleigh scattering out of
a cavity, we have to take into account the spatial variation
f(r) of Ec and Ecc in the resonator mode. Going back
to the definition of gkj and noting that Vj = Vk is the
WGM volume Vm of the two modes, we thus obtain [21]

2g = −αf2(r)ωc/Vm

Γ = α2f2(r)ω4
c/6πc

3Vm
(8)

for the mode splitting and broadening, respectively.
A close scrutiny of Eq. (7) shows that if |2g| is suffi-

ciently large to overcome γ0 and if 2|n2−1
n2+2

| < ( λ
2πa

)3 to

assure that |2g| > Γ, a mode splitting is resolved. This is
similar to the case of the strong coupling in CQED where
the coherent exchange of energy between the cavity mode
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and an atom leads to a mode splitting if the coupling co-
efficient |g| becomes larger than the cavity linewidth. As
in CQED, the mode splitting |2g| grows with decreasing
Vm and increasing ω, but the atomic dipole strength is
replaced here by α, and the splitting is asymmetric. The
antisymmetric mode remains unperturbed (see Eq. (7))
whereas the symmetric mode undergoes an additional
broadening given by Γ. This is a consequence of the fact
that the phases of the new eigenmodes are self-adjusted
so that the local scatterer is placed in a node (antin-
ode) of the antisymmetric (symmetric) mode. This un-
balanced splitting has been recently also observed for the
coupling of a far-detuned cold atom ensemble to a high-Q
ring cavity [3]. Indeed, in that case several million atoms
detuned from their transition resonances also behave es-
sentially as a large dielectric object.
Equations (8) predict a linear dependence between the

tip-induced splitting and line broadening if f(r) is varied.
However, due to the finite spatial extent of the tip and the
WGMs, α effectively grows as the tip enters the mode.
This position dependence leads then to a quadratic re-
lationship between the tip-induced broadening and split-
ting. To investigate this effect, we have moved the tip
in the radial direction and have recorded spectra at each
location. Figure 3a shows that as expected, the mode
splitting becomes larger when the tip enters the evanes-
cent field of the microsphere. Figure 3b plots the tip-
induced splitting versus the increase in the linewidth of
E+, confirming their quadratic dependence.

FIG. 4: a-d) WGM spectra recorded at different θ values of
the tip location. At position a) the tip is nearly outside the
spatial profile of the mode whereas at position d) it is in the
mode maximum, i.e. the sphere equator.

To realize an ideal scenario for studying the interaction
of a single well-defined scatterer with the fundamental
mode of a microsphere, we have searched for spheres in
which no mode splitting was observable in the beginning
and it was created only when the tip was introduced.
Figure 4 presents four spectra of a resonance as the tip
was scanned in the θ-direction from outside the mode
(a) to the maximum of the mode at the equator (d) at
constant separation from the sphere surface. The E+

mode is shifted in frequency by 13 MHz and broadened
by about 6 MHz. Given that |2g|/Γ = 3λ3/4π2α ac-
cording to Eqs. (8), the observed ratio of the splitting to
broadening implies a radius of a ∼ 140 nm for a spheri-
cal Rayleigh scatterer. This is in very good quantitative
agreement with the experimental parameters, consider-
ing a typical value of 50-100 nm for the radii of curva-
ture of SNOM tips and accounting for the overlap of the
conical tip taper with the evanescent part of the mode.
In conclusion, we have considered the phenomenon of

Rayleigh scattering both in free space and in the presence
of a resonator. By using a semi-QED approach, we have
pointed out the roles of the modification of the density
of states and of the Purcell effect in classical scattering.
Our results demonstrate that although the introduction
of a scatterer into a high-finesse resonator might be com-
monly thought to introduce losses, it can mediate a co-
herent coupling of the resonator modes and cause their
consequent normal mode splitting.
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