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Strain Hardening in Polymer Glasses: Limitations of Network Models
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Simulations are used to examine the microscopic origins of strain hardening in polymer glasses.
While traditional entropic network models can be fit to the total stress, their underlying assumptions
are inconsistent with simulation results. There is a substantial energetic contribution to the stress
that rises rapidly as segments between entanglements are pulled taut. The thermal component of
stress is less sensitive to entanglements, mostly irreversible, and directly related to the rate of local
plastic arrangements. Entangled and unentangled chains show the same strain hardening when
plotted against the microscopic chain orientation rather than the macroscopic strain.

The stress needed to deform a polymer glass increases
as the strain rises. This strain hardening plays a crit-
ical role in stabilizing polymers against strain localiza-
tion and fracture, and reduces wear [1]. While models
have had some success in fitting experimental data, fun-
damental inconsistencies in fit parameters and trends im-
ply that our understanding of the microscopic origins of
strain hardening is far from complete.
Most theories of strain hardening [2, 3] are based on

rubber elasticity theory [4]. These entropic network mod-
els assume that polymer glasses behave like crosslinked
rubber, with the number of monomers between crosslinks
equal to the entanglement length Ne. The increase in
the stress σ due to deformation by a stretch tensor λ̄
is attributed to the decrease in entropy as polymers are
stretched between affinely displaced entanglements. One
finds [3]

σ(λ̄) = σ0 +GRg(λ̄)L
−1(h)/3h (1)

where σ0 is the yield or plastic flow stress, GR is the
strain hardening modulus, L−1 is the inverse Langevin
function, g(λ̄) describes the entropy reduction for Gaus-
sian chains, and L−1(h)/3h corrects for the finite length
of segments between entanglements. The value of Ne en-
ters in h, which is the ratio of the Euclidean distance
between entanglements to the contour length.
Stress-stretch curves for a wide variety of glassy poly-

mers can be fit to Eq. 1, but the fit parameters are not
consistent with the microscopic picture underlying en-
tropic network models [5]. For example, values of Ne

from fitting h may be several times smaller than those
obtained from the plateau modulus G0

N [3]. Entropic
network models predict GR ≈ G0

N near Tg, but mea-
sured GR are about 100 times larger [6]. GR also rises
as T decreases [6, 7], while any entropic stress must drop
to zero as T → 0 [5]. Recent work [7, 8] shows that
changes in GR correlate with those in the plastic flow
stress. Indeed entire stress-stretch curves collapse when
normalized by σ0 [7]. This is not expected from entropic
models, where σ0 is treated as an independent parameter
arising from local plasticity. A more conceptual difficulty
in entropic models is that, unlike rubber, glasses are not
able to dynamically sample chain conformations.

In this Letter we use simulations to examine the micro-
scopic origins of strain hardening. While our results for
the total stress can be fit to Eq. 1, network models are
not consistent with observed changes in energy, heat flow
and molecular conformations. The stress can be divided
into energetic and thermal contributions. The energetic
contribution is strictly zero in the entropic model, but
we find it becomes significant as the segments between
entanglements are stretched taut. In contrast, entangle-
ments have little direct influence on the thermal contri-
bution. This thermal stress is found to be directly related
to the rate of local plastic rearrangements. Finally, net-
work models only predict strain hardening for entangled
chains (N ≫ Ne), yet substantial hardening is observed
for N as small as Ne/4. Results for entangled and unen-
tangled chains collapse when plotted as a function of the
microscopic strain-induced orientation of chains rather
than the macroscopic strain.

Much of the physics of polymer glasses is independent
of chemical detail [3, 9, 10]. We thus employ a sim-
ple coarse-grained bead-spring model [11] that captures
the key physics of linear homopolymers. Each polymer
chain contains N beads of mass m. All beads inter-
act via the truncated and shifted Lennard-Jones poten-
tial ULJ(r) = 4u0[(a/r)

12 − (a/r)6 − (a/rc)
12 + (a/rc)

6],
where rc = 1.5a is the cutoff radius and ULJ(r) = 0 for
r > rc. We express all quantities in terms of the molec-
ular diameter a, binding energy u0, and characteristic
time τLJ =

√

ma2/u0.

Covalent bonds between adjacent monomers on a chain
are modeled using the finitely extensible nonlinear elastic
potential U(r) = −(1/2)(kR2

0
)ln(1 − (r/R0)

2), with the
canonical parameter choices R0 = 1.5a and k = 30u0/a

2

[11]. Chain stiffness is introduced through a bending po-
tential Ubend(θ) = kbend(1 − cosθ), where θ is the angle
between consecutive covalent bond vectors along a chain.
Stiffer chains have lower entanglement lengths. Values
of Ne obtained from primitive path analysis (PPA) [12]
range from Ne = 71 for flexible chains (kbend = 0) to
Ne = 22 for kbend = 2.0u0.

Glassy states were obtained by rapid temperature
quenches from well-equilibrated melts [13] to a temper-
ature T below the glass transition temperature Tg ≃
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0.35u0/kB [14]. While quench rate affects the initial yield
stress [15], it had little influence on strain hardening. Pe-
riodic boundary conditions were imposed, with periods
Li along directions i = x, y, and z. The initial periods
L0

i were chosen to give zero pressure at T . A Langevin
thermostat with damping rate 1/τLJ was applied to the
peculiar velocities in all three directions.

Experiments commonly impose compressive deforma-
tions because they suppress strain localization [6, 10, 16].
Simulations were performed for both uniaxial and plane
strain compression. Both show the same behavior, and
only uniaxial results are presented below. The cell is com-
pressed along z at constant true strain rate ǫ̇ = L̇z/Lz.
Results for ǫ̇ = −10−5/τ are shown below, but similar
behavior is found at ǫ̇ = −10−3/τ . Qualitative changes
can occur at the higher rates employed in recent atom-
istic simulations of strain hardening [17, 18, 19, 20]. The
stress perpendicular to the compressive axis is main-
tained at zero by varying Lx and Ly [21]. Fits to net-
work models normally assume that the volume remains
constant and Lx = Ly and this is approximately true in
our simulations. Then deformation can be expressed in
terms of a single stretch component λ ≡ Lz/L

0

z.
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FIG. 1: (Color online) Total stress (solid line) and contri-
butions from heat (dashed line) and potential energy (dot-
dashed line) for a system with T = 0.2u0/kB , N = 350 and
Ne = 22. Fits of σ to Eq. 1 with Ne = 13 (dotted line) and
of σQ to a straight line are also shown. Both σ and g are
negative under compression.

Typical strain hardening results are shown in Fig. 1.
As in experiments, the stress is plotted against g(λ) ≡
λ2−1/λ. Then entropic network models (Eq. 1) attribute
curvature in the strain hardening regime to reductions
in entropy associated with the finite length Ne between
entanglements. The strong upward curvature in Fig. 1
can be fit to Eq. 1 (dotted line), but with a value of
Ne = 13 that is much smaller than that determined from
G0

N or PPA (Ne = 22). Similar reductions are found for
other chain stiffnesses and in fits to experiment.

The stress represents the incremental work done on a
unit volume of the system by an incremental strain. It

can be divided into contributions from changes in the
internal energy density U and the heat flow out of a unit
volume Q: σ = σU + σQ where σU = ∂U/∂ǫ and σQ =
∂Q/∂ǫ. The derivation of Eq. 1 assumes that σU does
not contribute to strain hardening and that σQ is entirely
due to reversible heat associated with changes in entropy.
Simulations allow these assumptions to be tested.

Figure 1 shows that results for σQ can be fit to the lin-
ear behavior predicted for the entropy of ideal Gaussian
chains at |g| > 1. Fits to smaller |g| can be obtained with
Ne = 30 in Eq. 1, but fits to uniaxial and plane strain re-
sults always give Ne that are larger than values obtained
from G0

N and PPA, and much larger than values from fits
to the total stress. Separate simulations show that σQ is
dominated by irreversible heat flow rather than changes
in entropy. After straining to a large |g| the stress is
returned to zero. The stretch only relaxes about 10%
and only ∼ 5% of the work associated with σQ is recov-
ered. Similar irreversibility is observed in experiments
[16], confirming that the force can not be entropic.

The energetic contribution to the stress in Fig. 1 is
important during the initial rise to the plastic flow stress
σ0. The value of σU then drops to a small constant for
0.5 < |g| < 2.5. At larger strains there is a pronounced
upturn in σU that contributes almost all of the curva-
ture in the total stress. This energetic term thus has a
crucial effect on fit values of Ne even though the deriva-
tion of Eq. 1 assumes σU = 0. Similar results are found
for all T and kbend, and for uniaxial and plane strain.
In all cases, σQ exhibits nearly ideal Gaussian behavior
(L−1(h)/3h ≃ 1) and σU leads to a more rapid rise in
stress at large stretches. The effect of σU increases and
extends to smaller |g| as the intrinsic Ne from PPA de-
creases.

Examination of the evolving conformations of individ-
ual chains also provides tests of entropic network mod-
els. If entanglements act like crosslinks, then polymer
glasses should deform affinely on scales greater than the
entanglement spacing. Our recent studies confirm this
affine displacement, and the associated increase in h as
segments between entanglements pull taut [7]. Fig. 1
shows that this increase in h has little effect on the ther-
mal terms that motivated Eq. 1. Instead, straightening
of segments produces large energetic terms by disrupting
the local packing structure. Energy is stored in increasing
tension in the covalent bonds countered by compression
of intermolecular bonds. Experiments also find signifi-
cant energy storage [16, 22], and could in principal track
σU over the full strain hardening regime.

Further insight into strain hardening is provided by
examining the dependence on chain length. Entropic
network models assume that the length should not mat-
ter for highly entangled systems, N ≫ Ne, and there
should be no network to produce strain hardening for
N < Ne. Simulations confirm that σ is independent of
N for N ≫ Ne, but show substantial strain hardening
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for N < Ne [7, 17]. Figure 2(a) illustrates this hardening
for chains as short as Ne/4. Results for short chains fol-
low the asymptotic behavior of highly entangled chains
(N/Ne > 4) to larger |g| as N increases. This suggests
that deformation changes chain conformations on longer
scales as |g| increases and that entanglements only be-
come relevant at large |g| (|g| >∼ 2.5 in Fig. 2).

The observation of strain hardening implies that the
microscopic arrangement of chains evolves under stretch-
ing. One way of quantifying this is through changes
in the root mean squared components Ri of the end-
to-end vectors of chains relative to their initial values
R0

i . Under an affine deformation at constant volume:
λ = Rz/R

0

z = (R0

x/Rx)
2 = (R0

y/Ry)
2. The deforma-

tion of short chains is subaffine[7, 23], but we find that
the above ratios [24] can all be described by an effec-
tive stretch λeff [25]. Figure 2(b) shows g(λeff ) as a
function of g(λ) for different N . All chains show sig-
nificant stretching, and highly entangled systems deform
affinely. The small deviation between g(λ) and g(λeff )
for N ≫ Ne results from a small increase in density
(∼ 4%) at large |g| rather than nonaffine deformation.
As N decreases, the deformation becomes subaffine at
smaller and smaller |g|. This confirms that the scale
over which chain conformations are distorted grows with
|g|, and that entanglements only become important for
|g| >>

∼ 2.5 in this system.

Strain hardening is directly related to the changes in
chain conformation represented by λeff rather than the
macroscopic deformation λ [25]. To illustrate this, data
from Fig. 2(b) are replotted against g(λeff ) in Fig.
2(c). Data for different chain lengths collapse onto a
single curve even though N is as much as 4 times smaller
than Ne. Similar results are found for other T , Ne and
for plane strain compression. Deviations are only seen
when N becomes comparable to the persistence length
and chains can no longer be viewed as Gaussian random
walks. These results show that entanglements do not
have a direct effect on strain hardening. Their main role
appears to be in forcing the local stretching of chains
λeff to follow the global stretch λ.

The recently observed [7, 8] correlation between the
strain hardening modulus GR and the plastic flow stress
σ0 suggests that local plastic rearrangements dissipate
most of the energy during compression. To monitor the
rate of plasticity P ≡ δf/δǫ, we counted the fraction
δf of Lennard-Jones bonds with r < rc whose length
changed by more than 20% over small intervals in strain
δǫ = 0.005. Tests on this and related amorphous models
[26] show that this criterion is large enough to exclude
elastic deformations, and that δǫ is small enough that a
given bond does not undergo multiple events. To elimi-
nate plastic rearrangements associated with equilibrium
aging, the rate of plasticity during deformation was mon-
itored at T = 0.

Figure 3 shows the rate of plasticity for Ne = 26 and
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FIG. 2: (Color online) (a) Stress vs. g(λ) during uniaxial
compression at kBT = .2u0 for kbend = 0.75u0, Ne = 39 and
strain rate ǫ̇ = −10−5/τLJ . Successive curves from bottom
to top are for N = 10 (⋄), 16 (− − −), 25 (△), 40 (· · ·),
70 (squares), 175 (−), and 350 (⋆). (b) g(λeff) vs. g(λ)
for the same systems. The dot-dashed line corresponds to
λeff = λ. (c) Stresses for different N collapse when plotted
against g(λeff).

71. There is a rapid initial rise as σ approaches σ0, fol-
lowed by a nearly linear increase during the strain hard-
ening regime. Also plotted in Fig. 3 are results for σQ.
A fixed vertical rescaling (coincidentally close to unity in
our units) produces an excellent collapse of P and σQ for
all Ne. Note that even the fluctuations in the quantities
are correlated [27]. Similar results are found for other
criteria for the rate of plasticity, with only the scaling
factor changing.

The above results clearly illustrate that the thermal
contribution to strain hardening is associated with an
increase in the rate of plastic rearrangements as chains
stretch. It remains unclear why this increase should ap-
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FIG. 3: (Color online) Rate of plastic rearrangements P (solid
lines) as a function of g(λ) for Ne = 26 (upper curve) and 71
(lower curve) at kBT = 0u0. Dashed lines show the corre-
sponding dissipative stress σQ.

proximately follow the increase in entropic stress pre-
dicted for Gaussian chains. The entropic stress repre-
sents the rate of decrease in the logarithm of the num-
ber of available chain conformations. One possibility is
that the rate of plastic rearrangements scales in the same
way because a decrease in the number of conformations
necessitates larger scale plastic rearrangements. The re-
lationship between the plastic flow stress and harden-
ing modulus follows naturally from this picture, and it
also explains why data for different chain lengths col-
lapse when plotted against λeff . Analytic investigations
of this scenario may prove fruitful.
Our results for σU suggest that the success of Eq. 1 in

fitting the total stress may be coincidental, and explain
why fit values of Ne are generally smaller than intrinsic
values from G0

N and PPA. It would be interesting to com-
pare trends in the calculated σU and σQ to experimental
results. These could be obtained by differentiating de-
formation calorimetry results for the work and heat, but
existing studie s have only extended to the plastic flow
regime [28, 29, 30].
This material is based upon work supported by the
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