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 We have observed reversible light-induced mechanical switching for individual 

organic molecules bound to a metal surface.  Scanning tunneling microscopy (STM) was 

used to image the features of individual azobenzene molecules on Au(111) before and 

after reversibly cycling their mechanical structure between trans and cis states using 

light.  Azobenzene molecules were engineered to increase their surface photomechanical 

activity by attaching varying numbers of tert-butyl (TB) ligands ("legs") to the 

azobenzene phenyl rings.  STM images show that increasing the number of TB legs 

"lifts" the azobenzene molecules from the substrate, thereby increasing molecular 

photomechanical activity by decreasing molecule-surface coupling. 
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 The conversion of light to mechanical motion at the molecular level provides 

exciting possibilities for nanomachine control and characterization, including high 

frequency and non-contact operation [1, 2].  Progress in this area has occurred through 

the investigation of solution-based molecular machine ensembles [3], organic polymers 

capable of light-induced expansion and contraction [4, 5], light-controlled ion channels 

[6], and other surface-molecule systems [7-9].  A common motif here is to employ 

molecular sub-units, such as azobenzene, known from ensemble measurements to 

reversibly transform from one isomeric state (e.g., trans) to another (e.g., cis) upon 

absorption of light (Fig. 1) [10].  A central concern is what strategies might be used to 

reversibly and optically control the mechanical state of a single, addressable molecule, 

and how such strategies are influenced by the coupling between a molecule and its 

environment. 

 In order to explore this issue, we have used scanning tunneling microscopy 

(STM) to spatially resolve the features of individual azobenzene molecules on a gold 

surface before and after reversibly cycling their mechanical structure between cis and 

trans states via photoisomerization.  This procedure is different from previous STM tip-

induced molecular manipulation studies [11-14] in that it is performed in the absence of 

an STM tip, it explores a different physical regime (i.e., photomechanical coupling), and 

it offers the flexible dynamical control inherent to optical processes. 

 We achieved reversible single-molecule photoisomerization by engineering 

azobenzene molecules to increase their surface photomechanical activity.  While gas- and 

solution-phase azobenzene molecules readily photoisomerize [10], this process can be 

quenched at a surface by molecule-surface coupling [15-17].  We therefore attached tert-
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butyl "legs" (TB: C4H9) to an azobenzene scaffold (C12H10N2) to reduce this coupling.  

When illuminated by UV light, azobenzene molecules made with zero or two TB legs did 

not photoisomerize when placed on a gold surface, but azobenzene molecules with four 

attached TB legs did.  Single-molecule photoisomerization was confirmed 

unambiguously by the reversibility of the photoreaction and by comparing experimentally 

resolved intramolecular features of single trans and cis azobenzene molecules with ab 

initio simulations.  The "transition" that we observe from quenched to active 

photomechanical behavior reveals the importance of electro-mechanical coupling 

between a molecule and substrate. 

We performed our measurements using a home-built variable-temperature 

ultrahigh vacuum STM.  Two-legged 4,4’-di-tert-butyl-azobenzene (DTB-azobenzene) 

and four-legged 3,3’,5,5’-tetra-tert-butyl-azobenzene (TTB-azobenzene) were 

synthesized via oxidative coupling reactions of 4-tert-butyl-aniline and 3,5-di-tert-butyl-

aniline, respectively [18].  Trans isomers of the molecules were deposited via leak valve 

and Knudsen cell techniques onto clean Au(111) substrates held at 30 K.  Samples were 

then annealed at room temperature for 10 minutes in order to achieve ordered molecular 

arrangements.  STM images were acquired in the temperature range of 25 K to 30 K 

using tunnel currents below 50 pA for stable imaging.  A CW diode laser at an external 

viewport provided UV radiation at 375 nm with an average intensity of 90 mW/cm
2
 at the 

sample surface.  During UV exposures the STM tip was retracted and the sample 

temperature was maintained between 28 K and 32 K. 

The STM images in Fig. 2 reveal the differences between adsorbed bare 

azobenzene (no TB legs), DTB-azobenzene (two TB legs), and TTB-azobenzene (four 
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TB legs).  Bare azobenzene molecules (Fig. 2A) appear as pairs of closely touching 

lobes, with each lobe indicating the position of a single phenyl ring [11, 19].  Individual 

DTB-azobenzene molecules (Fig. 2B) similarly appear as a pair of lobes, except that the 

DTB-azobenzene lobes are separated by a wider gap.  Individual TTB-azobenzene 

molecules (Fig. 2C) appear as four-lobed structures [14].  The appearance of DTB-

azobenzene and TTB-azobenzene is consistent with their expected TB leg arrangements 

(see models in Figs. 2B-2C).  Constant current linescans across the azobenzene 

derivatives (Fig. 2D) show that the DTB-azobenzene and TTB-azobenzene molecules are 

progressively taller than bare azobenzene molecules.  Hence molecular engineering using 

TB-leg functionalization [20] achieves progressive "lifting" of photomechanical 

molecules away from a surface. 

The photomechanical activity of this series of azobenzene derivatives was 

checked by illuminating each type of molecular adsorbate separately with an equal 

exposure to UV light.  Successful UV-induced switching was observed only for the four-

legged TTB-azobenzene molecules.  Figure 3 shows the same island of TTB-azobenzene 

molecules on Au(111) before and after a three hour exposure to UV light.  Before UV 

exposure the island is uniformly composed of the trans isomer.  After UV exposure the 

emergence of new, bright protrusions can be seen in the island.  While trans-TTB-

azobenzene molecules display four peripheral lobes before UV illumination, the UV-

transformed TTB-azobenzene molecules display only three peripheral lobes along with a 

new, bright (i.e., "tall") feature near the center of the molecule (Fig. 3 insets and Fig. 4).  

Approximately 4% of trans-TTB-azobenzene molecules photoswitch to the new "three-

lobe state" after a 1 hour UV exposure at 90 mW/cm
2
 [21]. 
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 The observed photomechanical switching can be optically reversed for single 

molecules by re-exposing the molecules to UV light.  Fig. 4 shows one particular TTB-

azobenzene molecule undergoing a complete cycle of reversible photo-switching (trans 

state   three-lobe state   trans state).  The reversibility of the photoswitching provides 

strong evidence that the three-lobe state is indeed the cis isomer of TTB-azobenzene, 

since reversibility rules out other possible structural change mechanisms such as 

photodissociation (STM tip-based molecular manipulation in the absence of photons can 

also achieve similar structural transformations [14]). 

Ab initio density functional theory (DFT) calculations predict TTB-azobenzene 

cis and trans isomer appearances very close to the experimentally observed molecules 

(Fig. 5).  Local density of states (LDOS) calculations were performed for isolated trans- 

and cis-TTB-azobenzene molecules using the SIESTA code [22] (similarly to Ref. [23] 

but with the generalized-gradient approximation (GGA) [24]).  The trans and cis isomer 

molecular structures were optimized via energy minimization (Fig. 5A and B, cis CNNC 

and CCNN angles are 11° and 47° respectively), and isosurfaces of HOMO orbital LDOS 

were calculated to simulate STM images.  The simulated trans isomer STM image is 

dominated by four peripheral lobes at the TB leg positions (Fig. 5C).  The simulated cis 

isomer STM image shows a bright central area due to the upwards rotation of one TB leg, 

leaving the three remaining TB legs on the periphery below (Fig. 5D).  A simple tiling of 

the calculated trans and cis isomer simulated images using experimentally observed 

lattice positions (Fig. 5E) shows that the simulated trans- and cis-TTB-azobenzene 

images match the experimental data (Fig. 5F) quite well. 
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All of the azobenzene molecules studied here photoisomerize easily in solution 

[25] and so it is clear that the change in environment at a surface plays a role in 

modifying molecular photoswitching behavior.  The influence of a surface on molecular 

photoswitching can be divided into three general mechanisms:  (i) Steric hindrance: 

molecules lose the freedom to change conformation if atomic motion is constrained by 

either the surface or neighboring molecules [10].  (ii) Electronic lifetime effects: if the 

surface-modified lifetime of photo-excited electrons is less than the time it takes for a 

molecule to complete a conformational change then photoswitching can be quenched [10, 

15, 17].  (iii) Substrate-induced changes in optical absorption:  hybridization between an 

adsorbed molecule and a surface can change the optical absorption spectrum (and 

subsequent photoswitching properties) of a molecule [15].  A recent theoretical study 

proposes that, analogous to the Franck-Condon principle, coupling between molecular 

and substrate electromechanical degrees of freedom (e.g. dissipative modes such as 

phonons) can quench the optical absorption necessary for azobenzene cis ↔ trans 

photoswitching [17]. 

We believe that steric hindrance due to gold surface attachment is not the cause of 

quenching, as follows:  azobenzene bonds weakly to gold (physisorption limit) [11], we 

observe similar surface diffusion rates for the different azobenzene derivatives, and STM 

tip-pulsing experiments show that it is possible to isomerize bare azobenzene on gold 

using tip-manipulation techniques [13].  Steric hindrance due to molecule-molecule 

interactions within islands is also not likely to play a dominant role in photoquenching.  

Molecule-molecule bonding appears weak because we can easily separate azobenzene 

molecules without damage using STM manipulation and we also measure a very low 
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melting point (approximately 50 K) for islands of all three azobenzene species.  

Furthermore, molecules at the boundaries of islands (which have fewer nearest neighbors 

compared to interior molecules) show identical photoswitching to interior molecules.   

Our observation of an increase in azobenzene photoswitching rate as the molecule 

is "lifted" off the surface is consistent with quenching mechanisms (ii) and (iii). We find 

these possibilities difficult to distinguish at present.  Molecule-substrate electronic state 

hybridization can lead to both optical absorption shifts and changes in excited state 

lifetimes [15].   Recent theoretical work, however, predicts that increased hybridization 

of azobenzene to substrate dissipative modes will cause a sharp transition to completely 

quenched photoisomerization accompanied by gaps opening in optical absorption bands 

[17].  Future STM measurements of the dependence of single-molecule photoswitching 

on the wavelength of light, as well as new optical absorption measurements, will be 

useful in distinguishing the mechanisms that dominate photoswitching in this hybrid 

molecule-surface system. 

In conclusion, we have experimentally observed reversible photomechanical 

switching for individual azobenzene molecules at a metal surface.  Our measurements 

reveal the significance of environmental coupling in determining molecular photo-

switching behavior.  This effect will likely play an important role in future applications of 

molecular photoswitching in nanostructured condensed matter systems. 
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Figure Captions: 

 

Fig. 1.  Azobenzene photoisomerization reaction. 

 

Fig. 2.  STM constant-current images of functionalized azobenzene molecules on 

Au(111) (T = 30 K, V = -1 V, I = 25 pA, images are scaled identically): (A) bare 

azobenzene, (B) DTB-azobenzene, (C) TTB-azobenzene.  Upper panels show chemical 

structure of the trans isomers of the imaged molecules.  Single molecule images are 

identified by white boxes in insets (dotted line in each box shows linescan trajectory for 

(D)).  (D) Linescans across different functionalized molecules show apparent height on 

Au(111).  DTB-azobenzene and TTB-azobenzene linescans were taken at the edge of 

islands.  Dashed part of linescan provides guide-to-the-eye for identifying single-

molecule width. 

 

Fig. 3.  Photoisomerization of individual TTB-azobenzene molecules on Au(111) from 

trans to cis.  Same island of TTB-azobenzene molecules is shown before (upper image) 

and after (lower image) a three hour exposure to 90 mW/cm
2
 UV irradiation at 375 nm.  

After UV exposure 45 TTB-azobenzene molecules have switched from the trans to the 

cis state.  Inset zoom-in images show UV-induced switching (before and after) from trans 

to cis for a single molecule (identified by white box). 

 

Fig. 4.  Reversible photo-induced switching is observed for a single TTB-azobenzene 

molecule.  The same individual TTB-azobenzene molecule (identified by white boxes in 
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three successive panels) is shown before and after two successive exposures to UV light.  

The molecule starts out in the trans state (top panel), is then switched to the cis state after 

the first exposure to UV light (middle panel), and is then switched back to the trans state 

after a second exposure to UV light (bottom panel).   

 

Fig. 5.  Simulated trans- and cis-TTB-azobenzene structures compared to experiment.  

(A) Calculated trans geometry.  (B) Calculated cis geometry.  (C) Calculated trans local 

density of states (LDOS) integrated from EF to EF – 1 eV, at an isosurface about 3 Å 

away from the nearest atoms.  (D) Calculated cis LDOS isosurface (same parameters as 

in (C)).  (E) Simulated STM image of TTB-azobenzene using tiled single-molecule 

LDOS isosurfaces from (C) and (D) (image has been smoothed using a 0.2 nm width 

Gaussian blur filter to approximate experimental convolution with the STM tip).  (F) 

Experimental STM image of TTB-azobenzene molecules including one photoisomerized 

cis isomer. 
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