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Inelastic effects in Aharonov-Bohm molecular interferometer
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Inelastic effects arising from electron-phonon coupling in molecular Aharonov-Bohm (AB) inter-
ferometers are studied using the nonequilibrium Green’s function method. Results for the magneto-
conductance are compared for different values of the electron-phonon coupling strength. At low bias
voltages, the coupling to the phonons does not change the lifetime and leads mainly to scattering
phase shifts of the conducting electrons. Surprisingly, opposite to the behavior of an electrical gate,
the magnetoconductance of the molecular AB interferometer becomes more sensitive to the thread-
ing magnetic flux as the electron-phonon coupling is increased. PACS numbers: 73.63.-b, 73.63.Fg,
75.75.+a

Control of conductance in molecular junctions is of
key importance in molecular electronics [1, 2]. The cur-
rent in these junctions is often controlled by an electrical
gate designed to shift conductance peaks into the low-
bias regime. Magnetic fields on the other hand, have
been rarely used due to the small magnetic flux captured
by molecular conductors (an exception is the Kondo ef-
fect in single-molecule transistors [3, 4]). This is in con-
trast to a related field, electronic transport throughmeso-
scopic devices, where considerable activity with magnetic
fields has led to the discovery of the quantum hall ef-
fect [5] and a rich description of transport in such con-
ductors [6, 7, 8, 9, 10]. The scarcity of experimental
activity is due to the belief that significant magnetic re-
sponse is obtained only when the magnetic flux, φ, is on
the order of the quantum flux, φ0 = h/e (where e is the
electron charge and h is Planck’s constant). Attaining
such a flux for molecular and nanoscale devices requires
unrealistically huge magnetic fields [11].

Recently, we have described the essential physical re-
quirements necessary for the construction of nanome-
ter scale magnetoresistance devices based on an AB [12]
molecular interferometer [11, 13]. The basic idea was to
weakly couple a molecular ring to conducting leads, cre-
ating a resonance tunneling junction. The resonant state
was tuned by a gate potential to attain maximal conduc-
tance in the absence of a magnetic field. The application
of a relatively small magnetic field shifts the state out
of resonance, and conductance was strongly suppressed
within fractions of the quantum flux. The combination of
a gate potential and a magnetic field reveals new features
and provides additional conductivity control [14, 15].

Our previous study has neglected completely inelastic
effects arising from electron-phonon interactions [16, 17,
18, 19, 20, 21, 22]. Can a relatively small magnetic flux
change significantly the conduction in molecular rings
when the electron-phonon coupling becomes significant?
Or, perhaps inelastic effects will broaden the resonant
state and conduction will not be suppressed significantly
upon the application of the magnetic field. The decay
of the amplitude of the AB oscillations due to electron-
phonon coupling has been studied for mesoscopic sys-
tems [23]. In this letter we address this problem for

FIG. 1: A sketch of the AB ring. Each site on the ring can be
occupied by a single electron. The ring sites are connect by
springs with a frequency Ω. An electron on site j is coupled
to the local motion of this site, with a coupling strength M .

molecular rings, where we focus on the low range of the
magnetic flux appropriate for molecular rings. Opposite
to the effects of an electrical gate, we find that inelastic
effect arising from electron-phonon couplings narrows the
magnetoconductance peaks.
We consider a two terminal junction of an Aharonov-

Bohm ring with N sites as sketched in Fig. 1. A realiza-
tion of this model to realistic molecular loops is described
elsewhere [11, 13, 14, 15]. We describe the electronic
structure of the ring and the leads using a magnetic ex-
tended Hückel model [11, 24]. The description of the
ring also includes local phonons and electron-phonon in-
teractions are approximated to lowest order. The phonon
local frequency Ω and the coupling M of an electron on
site j to the local motion of site j are the only two free
parameters of the model. The full Hamiltonian in second
quantization is given by:

H =
∑

i,j

ti,j(B)c†i cj +
∑

m,n∈L,R

ǫm,n(B)d†mdn+





∑

m,j

Vm,j(B)d†mcj +H.c.



 +

N−1
∑

k=0

~ωk(b
†
kbk + 1/2)

+

N−1
∑

j,k=0

Mk
j c

†
jcj(b

†
k + bk).

(1)

The first two terms on the right hand side (RHS) of Eq. 1
represent the zero-order electronic Hamiltonian of the

ring and leads, respectively. c†j (cj) is Fermion creation
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(annihilation) operators of an electron on site j on the
ring, and d†m (dm) is Fermion creation (annihilation) op-
erators of an electron on sitem on the left (L) or right (R)
lead. ti,j(B) and ǫi,j(B) are the hopping matrix elements
between site i and site j on the ring and lead, respectively.
The third term on the RHS of Eq. 1 corresponds to the
coupling between the ring and the leads, where Vm,j(B)
is the hopping element between site m on the lead and
site j on the ring. All hopping elements depend on the
magnetic field B, which is taken to be uniform in the di-
rection perpendicular to the ring plane. Both linear and
quadratic terms in the magnetic field are included in the
calculation [11]. The last two terms in Eq. 1 represents
the Hamiltonian of the phonons and the electron-phonon

interactions. b†k (bk) is a boson creation (annihilation)
operator of phonon mode k with a corresponding fre-
quency ωk. This set of phonon modes was obtained by a
unitary transformation from local to normal coordinates
of a one dimensional chain of coupled harmonic oscilla-
tors, characterized by a single frequency Ω, as illustrate
in Fig. 1. These frequencies constitute a band of width
proportional to the coupling between the oscillators. The
electron-phonon coupling is approximated to lowest or-
der. Each site on the ring is coupled to all phonon modes

with a coupling strength Mk
j = M

√

Ω
ωk

Ujk, where Ujk

are the matrix elements of transformation matrix U from
local to normal modes.
The calculation of the conductance is described within

the framework of the nonequilibrium Green’s function
(NEGF) method [25]. The total current I = Iel + Iinel
is recast as a sum of elastic (Iel) and inelastic (Iinel)
contributions given by [21, 22, 26]

Iel =
2e

~

∫

dǫ

2π
[f(ǫ, µR)− f(ǫ, µL)]

Tr [ΓL(ǫ)G
r(ǫ)ΓR(ǫ)G

a(ǫ)]

(2)

and

Iinel =
2e

~

∫

dǫ

2π
Tr

[

Σ<
L (ǫ)G

r(ǫ)Σ>
ph(ǫ)G

a(ǫ)

−Σ>
L (ǫ)G

r(ǫ)Σ<
ph(ǫ)G

a(ǫ)
]

,

(3)

respectively. The retarded (advanced) GFs satisfy the
Dyson equation

Gr,a(ǫ) =
{

[gr,a(ǫ)]−1 −Σ
r,a
L (ǫ)−Σ

r,a
R (ǫ)−Σ

r,a
ph (ǫ)

}−1

,

(4)
where gr,a(ǫ) is the uncoupled retarded (advanced) elec-
tronic GF of the ring. The greater (lesser) GFs satisfy
the Keldysh equation at steady state (for an initial non-
interacting state)

G≶(ǫ) = Gr(ǫ)
[

Σ
≶
L (ǫ) +Σ

≶
R(ǫ) +Σ

≶
ph(ǫ)

]

Ga(ǫ). (5)

In the above equations, Σ
r,a,≶
L (ǫ), Σ

r,a,≶
R (ǫ), and

Σ
r,a,≶
ph (ǫ) are the retarded (r), advanced (a), lesser (<)
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FIG. 2: Conduction as a function of the gate voltage at
zero magnetic flux with (dashed line) and without (solid line)
electron-phonon coupling. Inset: A similar plot for the single
resonant level model described in Ref. 22.

and greater (>) self-energies arising from the coupling to
the left lead, right lead, and the phonons, respectively,
and ΓL,R(ǫ) = i

[

Σr
L,R

(ǫ)−Σa
L,R

(ǫ)
]

, where

Σr,a
L,R(ǫ) = (ǫS∗ −V∗(B)) gr,a

L,R(ǫ) (ǫS−V(B)) . (6)

In the above, V(B) is the lead-ring hopping matrix with
elements Vmj(B), S is the overlap matrix between the
states on the leads and on the ring, and g

r,a
L,R(ǫ) is the

retarded (advanced) uncoupled GF of the left or right
lead. The corresponding leaser (greater) self-energies are
given by

Σ
≶
L,R(ǫ) =

(

δ≶ − f(ǫ, µL,R)
) [

Σr
L,R(ǫ)−Σa

L,R(ǫ)
]

, (7)

where δ≶ equals 0 for < and 1 otherwise, and f(ǫ, µ) =
1

1+eβ(ǫ−µ) . The self-energy arising from the interactions

with the phonons is calculated using the first Born ap-
proximation (FBA) and is given by [21, 22, 26]:

Σr
ph(ǫ) = i

∑

k

∫

dω

2π
Mk

{

D<
k (ω)g

r(ǫ− ω)+

Dr
k(ω)g

<(ǫ − ω) +Dr
k(ω)g

r(ǫ− ω)
}

Mk,

(8)

where the Hartree term has been omitted [22]. The lesser
and greater self energies arising from the coupling to the
phonons are given by:

Σ
≶
ph(ǫ) = i

∑

k

∫

dω

2π
MkD

≶
k (ω)g

≶(ǫ− ω)Mk. (9)

In the above equations, Dr,a
k and D

≶
k are the uncou-

pled equilibrium retarded (advanced) and lesser (greater)
GFs of phonon mode k, respectively, g≶(ǫ) is the lesser
(greater) uncoupled electronic GF of the ring, and Mk is
the electron-phonon coupling matrix of mode k (diagonal
in the cj basis).
We now turn to discuss the results of a specific realiza-

tion of the above model. We consider a ring composed of
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N = 40 sites. The sites are identical and contribute a sin-
gle electron which is described by a single Slater s-like or-
bital. The coupling between the ring and the leads is lim-
ited to the contact region. For simplicity, the electronic
self-energies arising from this coupling are approximated
within the wide band limit. Specifically, we neglect the
real-part of the electronic self-energy and approximate
ΓL,R(ǫ) with matrices that are independent of energy,
where the only non-vanishing elements are the diagonal
elements (ΓL,R) corresponding to the two sites coupled
to the left or right lead. The local phonon frequency
Ω = 0.0125eV is characteristic of a low frequency optical
phonon in molecular devices. Since our model does not
include a secondary phonon bath required to relax the
energy from the optical phonons, we include a phonon
energy level broadening η = 0.016Ω which is included
in the uncoupled GFs of the phonon. The coupling to
each of the leads is taken to be ΓL = ΓR = 4Ω such
that the magnetoconductance switching in the absence
of electron-phonon coupling is obtained at ∼ 5 Tesla.

Before we address the effects of electron-phonon cou-
pling on the magnetoconductance properties of the sys-
tem described above we will analyze the role of a gate
potential on the conductance. In Fig. 2 we plot the
zero-bias conduction as a function of a gate voltage with
(M/Γ = 1, where Γ = ΓL +ΓR) and without (M/Γ = 0)
electron-phonon coupling. The gate voltage was modeled
by an additional potential eVgS, where S is the overlap
matrix, that was added to the ring hopping matrix ele-
ment tij . For comparison (inset of Fig. 2) we also include
the results of a single resonant level coupled to a single
phonon with identical model parameters used by Mitra
et al. [22].

The two most significant observations are the expected
broadening of the conduction when the electron-phonon
coupling is turned on and the value of the zero-bias con-
duction (g/g0 = 1, where g0 = 2e/h is the quantum con-
ductance) in the presence of electron-phonon coupling.
To better understand these results we rewrite the current
for the case that ΓL(ǫ) = ΓR(ǫ) ≡ Γ(ǫ)/2 in the following
way [27]: I = 2e

h

∫

dǫ (f(ǫ− µL)− f(ǫ− µR)) T (ǫ) where

T (ǫ) = i
4TrΓ(ǫ) (G

r(ǫ)−Ga(ǫ)). Note that T (ǫ) is the
transmission coefficient only when M = 0. In the wide
band limit, for the single resonant level model, T (ǫ) can

be reduced to Γ
4

Γ−2Σr
ph,im(ǫ)

(ǫ−ǫ0−Σr
ph,re

(ǫ))2+(Γ/2−Σr
ph,im

(ǫ))2
. As a

result of the fact that Σr
ph,im(0) = 0 at zero bias, the

only inelastic contribution to the conduction comes from
the real part of the phonon self-energy [22]. From this, it
follows that even in the presence of electron-phonon cou-
pling, the maximal conduction is gmax/g0 = 1, as clearly
can be seen in Fig. 2 for both cases. It also immediately
implies that the main contribution to the broadening of
the resonant conduction peak comes from the real-part
of the phonon self-energy, i.e., from processes that lead
to scattering phase shifts, but do not change the lifetime
of the state.

So far we have discussed the effect of electron-phonon
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FIG. 3: Conductance as a function of magnetic flux for several
values of the electron-phonon coupling strength M and for
different temperatures.

coupling on the zero-bias conduction as a function of
a gate voltage. We now turn to discuss the major re-
sult of the present study. In Fig. 3 we plot the magne-
toconductance of the AB-ring for several values of the
electron-phonon couplings (M) and for different temper-
atures (T ). We focus on the low value of the magnetic
flux φ = AB, where A is the area of the ring and B is
taken perpendicular to the ring plane.

The case M = 0 for different systems was discussed in
detail in our previous studies, where the main goal was to
establish the conditions required to achieve negative mag-
netoconductance and magnetic switching at low magnetic
fields, despite the relatively large magnetic fields required
to complete a full AB period [11, 13, 15]. The essential
procedure described in [11] was to weakly couple the AB-
ring to the conducting leads and at the same time to ap-
ply a gate potential to shift the position of the resonance
state such that conduction is maximized at φ/φ0 = 0. A
manifestation of these ideas is depicted in Fig. 3 for the
case that M = 0 (solid curves), where the conduction is
reduced from its maximal value to a small value at a rela-
tively low magnetic flux. As expected, we find that as the
temperature is increased the maximal value g/g0 is de-
creased and the width of the magnetoconductance peaks
is increased linearly with T for M/Γ = 0 (with deviations
from linearity as M/Γ is increased). This increase in the
width with temperature is a result of resonant tunnel-
ing and the broadening of the Fermi distributions as T is
varied.

Turning to discuss the case of M 6= 0, one of the ma-
jor questions is related to the effects of electron-phonon
coupling on the switching capability of small AB-rings.
Based on the discussion of the results shown in Fig. 2, one
might expect that an increase in M will lead to a broad-
ening of the magnetoconductance peaks, thereby increas-
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4
(dashed curves) for different

values of the magnetic flux. The dotted curve at the lower
panel shows ∂

∂µ
∆f(ǫ − µ) at T/Ω = 0.007, where ∆f(ǫ − µ)

is the difference in the Fermi distribution of the left and right
lead.

ing the value of the magnetic field required to switch a
nanometer AB-ring, and perhaps leads to unphysical val-
ues of B required to reduced the conduction significantly.
As can be seen in Fig. 3, the numerical solution of the
NEGF for M 6= 0 leads to a reduction of the width of
the magnetoconductance peaks, and the switching of the
AB-ring is achieved at lower values of the magnetic flux
compared to the case where M = 0.
This surprising observation can be explained in sim-

ple terms. As discussed above, even in the presence
of electron-phonon coupling, the maximal conduction at
zero bias and zero temperature is gmax/g0 = 1, as clearly
is the case for the results shown in the upper left panel of
Fig. 3 for φ/φ0 = 0. For the symmetric ring of N = 4n
the resonance condition at φ/φ0 = 0 is equivalent to
the condition that electrons entering the ring from left
interfere constructively when they exit the ring to the
right [11, 13]. This picture also holds when M 6= 0, and
the conduction takes a maximal value at φ/φ0 = 0. The
application of a magnetic field leads to destructive in-

terference and increases the back scattering of electrons.
This loss of phase is even more pronounced when inelas-
tic effects arising from electron-phonon coupling are in-
cluded. In the magnetoconductance this is translated to
a more rapid loss of conduction as a function of the mag-
netic field when M is increased.

Mathematically, the rapid decay of the conduction
with the magnetic field as the electron-phonon cou-
pling is increased can be explained by analyzing the
dependence of T (ǫ). In Fig. 4 we plot Tel(ǫ) =
Tr [ΓL(ǫ)G

r(ǫ)ΓR(ǫ)G
a(ǫ)], which is elastic (and dom-

inant) contribution to T (ǫ), as a function of energy for
several values of φ/φ0 for M/Γ = 0 or M/Γ = 1

4 . In the
lower panel we also plot the corresponding Fermi distri-
bution window. At φ/φ0 = 0, Tel(ǫ) ≈ 1 near the Fermi
energy (ǫf ), independent of M , and the conduction is
g/g0 ≈ 1. The application of a small magnetic field re-
sults in a split of Tel(ǫ), where each peak corresponds to
a different circular state [28]. The separation between
the two peaks in the elastic limit ∆ = (ǫ2− ǫ1) ∝ φ/φ0 is
proportional to the magnetic flux, where ǫ1,2 are the cor-
responding energies of the two circular states. When in-
elastic terms are included, due to the fact that the imag-
inary part of Σr

ph(ǫ) is negligibly small, the renormal-
ized positions of the two peaks can be approximated by
ǫ∗1,2 = ǫ1,2+Σr

ph,re(ǫ1,2) = ǫ1,2±Σr
ph,re(ǫ2), which implies

that the renormalized separation between the two peaks
can be approximated by ∆∗ = (ǫ∗2−ǫ∗1) = ∆+2Σr

ph,re(ǫ2).
Therefore, as M is increased ∆∗ is also increased, consis-
tent with the numerical results shown in Fig. 4.

Similarly to the electrical gate, the magnetic field pro-
vides means to externally control the conductance of
a ring-shaped molecular junction. However, there are
striking differences in the properties of these two gauges.
This was illustrated previously in a multi-terminal de-
vice, where the polarity of the magnetic field, which cou-
ples to the electronic angular momentum, played a key
role. In the present study we showed that there is also a
fundamentally difference with respect to inelastic effects.
While the conductance as a function of the gate voltage
broadens due to coupling to phonons it actually narrows
considerably in response to a magnetic field. This un-
expected result was rationalized in terms of a rapid loss
of the phase of electrons at the exit channel arising from
the coupling to the phonons. Mathematically, this effect
was traced to the form of the real part of the phonon
self-energy that gives rise to scattering phase shifts, but
does not change the lifetime of the resonant level through
which conduction takes place.
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