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We analyze the interplay between vibrational and electronic degrees of freedom in charge transport
across a molecular single-electron transistor. We focus on the wide class of molecules which possess
quasidegenerate vibrational eigenstates, while no degeneracy occurs for their anionic configuration. We
show that the combined effect of a thermal environment and coupling to leads, involving tunneling events
charging and discharging the molecule, leads to a dynamical symmetry breaking where quasidegenerate
eigenstates acquire different occupations. This imbalance gives rise to a characteristic asymmetry of the
current versus an applied gate voltage.
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Molecular electronics is a promising answer to the de-
mand of miniaturization, reproducibility, and flexibility of
electronic devices. Starting with the pioneering work of
Aviram and Ratner [1], and especially with the first single-
molecule measurement by Reed et al. [2], molecular elec-
tronics has become an active research field both experi-
mentally and theoretically [3]. Still, fundamental questions
on the peculiar nature of single-molecule junctions and
their novel functionalities remain open. Among others they
involve the unique electromechanical properties of mo-
lecular junctions which render these distinctly different
from, e.g., semiconductor quantum dots.

Recent research on this particular topic has revealed a
number of interesting effects such as shuttling instabilities
[4–6], Franck-Condon blockade [7,8], and, more gener-
ally, conformational [9–11] or vibronic [12–15] signatures
in the electron transport characteristics. In this respect,
however, the role of coherences in transport due to quasi-
degenerate levels has not been highlighted.

In this Letter we consider charge transport through a
molecular junction weakly contacted to leads. At low
enough temperatures charging effects prevent that more
than one excess electron at a time can populate the mole-
cule. The weak coupling ensures that the potential drop
between source and drain leads is concentrated in the
contact region, and no substantial electric field acts directly
on the molecule. We focus on the ubiquitous, but so far
poorly investigated, case of adiabatic vibronic potentials
with more than one stable configuration as, e.g., found in
oligoparaphenylenes. In particular, we address molecules
characterized by eigenstate dubletts in the neutral configu-
ration and nondegenerate anionic states, or vice versa. This
is sketched in Fig. 1, which can represent, e.g., the adia-
batic potential energy surfaces of biphenyl-based mole-
cules as a function of the dihedral angle (here playing the
role of the x coordinate) between the phenyl rings [15].
These molecules have been studied in recent transport
experiments [16,17]. Specifically, in [17] for the first
time quantitatively, the connection between the angular

conformation and the electrical conductance has been
proved for several biphenyl-based molecules.

We show that dynamical symmetry breaking (DSB),
where quasidegenerate eigenstates are differently occu-
pied, may occur and affect transport, while in the absence
of couplings to the leads these states are equally populated
at finite temperature, and hence the system does not prefer
a definite parity. Temperature, on the other hand, should
not exceed a critical value above which DSB is lost due to
dephasing, caused by a thermal bath. Solving the master
equation for the reduced density matrix including coher-
ences, we demonstrate the possibility of detecting DSB in
the current through the molecule under different bias and
gating conditions.

To address transport in the single-electron regime, where
only the electronic ground states j0i of the neutral and j1i
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FIG. 1 (color online). Electromechanical states of the mole-
cule. Thick black lines indicate the adiabatic potentials V0 and
V1 for the neutral (solid) and singly charged (dashed) molecule.
Thin green (blue) lines denote the even (odd) vibrational eigen-
functions (for the two potentials) displayed with a vertical shift
equal to their corresponding energy eigenvalue. Energies are
given in units of @!0 and lengths in terms of the zero-point
motion �x0 �

���������������
@=m!0

p
. The arrows mark examples of allowed

and forbidden transitions.
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of the anionic configuration are involved, we describe the
molecule through the Hamiltonian

 HS �
p2

2m
� j0ih0jV0�x� � j1ih1jV1�x� (1)

in terms of the corresponding adiabatic potential energy
surfaces V0�x�, V1�x� associated with the softest mode
coordinate x. The adiabatic potentials and the related vi-
brational eigenfunctions are sketched in Fig. 1. The neutral
molecule is characterized by the double well potential V0

with minima located at��. For large enough barriers, i.e.,
exponentially small tunnel splitting, the low-lying eigen-
states are organized in pairs of (quasi)degenerate wave
functions. The anion is modeled by a single harmonic
potential V1 with frequency !1, centered at the origin of
the coordinate system (dashed line in Fig. 1).

We express the system coupled to leads and in contact
with a thermal bath through the Hamiltonian

 H � HS �HL �HR �HB � VT � VSB: (2)

The leads are described as reservoirs of noninteracting
quasiparticles in terms of HL �HR �

P
k;��L;R��k� �

���c
y
k�ck�, where�L;R � ��V=2 accounts for the effects

of a symmetrically applied bias voltage and cyk� (ck�)
creates (destroys) an electron in the lead �. Transfer of
electrons is mediated by the tunneling Hamiltonian VT �
v
P
k;��L;R�j0ih1jc

y
k� � j1ih0jck��. Finally, HB describes a

thermal bath of harmonic oscillators coupled linearly
to the displacement coordinate x via the system-bath
Hamiltonian VSB � @~gx

P
q�d
y
q � dq�, where dyq and dq

are bosonic creation and destruction operators associated
with the oscillator with energy @!q.

Since we are interested only in the low-energy states, we
approximate V0�x� by two harmonic wells centered at ��
and with frequency !0. Formally, this is achieved by
projecting the Hamiltonian H on a smaller Hilbert space
in which we can define the identity operator as

 1 � j1ih1j � j0ih0j�P� � P��: (3)

Here P� �
PN
n�0 jn;�ihn;�j are projection operators

on the states right or left to the barrier. They are defined in
terms of the shifted harmonic oscillator eigenvectors
jn;�i � exp��i�p=@�jni. The condition of negligible
overlap between these eigenfunctions reads P�P� �
P�P� � 0. In the Hilbert space defined by identity (3)
we obtain as effective system Hamiltonian
 

Heff
S � j0ih0j

X
���

�
P �

�
1

2
� dy�d�

�
P �

�
@!0

� j1ih1j
��

1

2
� dyd

�
@!1 � eVg � �a

�
; (4)

where dy� and dy are operators for the neutral and charged
configurations, Vg is the gate voltage, and �a the electron

affinity. Along similar lines we find for the effective tun-
neling and system-bath Hamiltonians
 

Veff
T � v

X
k;��L;R

	j0ih1jcyk��P� � P�� � H:c:
;

Veff
SB � @g

X
q

�dq � d
y
q �f�j1ih1j�d� dy�

� j0ih0j
X
���

	P ��d� � d
y
� � �2��P �
g;

(5)

with g � ~g
���������������������
2@=�m!0�

p
and � �

���������������
!1=!0

p
. For transport,

we seek stationary solutions of the Liouville equation

 _��t� � �
i
@

Trleads�bathf	H
eff ;W�t�
g (6)

for the reduced density matrix (RDM) ��t� :�
Trleads�bathfW�t�g, where W�t� is the total density matrix
associated with the effective Hamiltonian corresponding to
that in Eq. (2). Treating the interactions Veff

T and Veff
SB as

perturbations, we rewrite Eq. (6) in terms of three contri-
butions: _��t� � L��t� � �Lcoh �Ltun �Ldamp���t�. The
coherent part of the differential equation has the usual form
Lcoh��t� � ��i=@�	Heff

S ; ��t�
 describing the evolution of
the isolated molecule. The coupling to the leads/bath gives
rise to the driving/damping terms Ltun��t� and Ldamp��t�.

We now perform the following standard approximations:
we treat the leads as thermal reservoirs at equilibrium
temperature T, consider the coupling to the leads up to
second order in Veff

T , and, being interested in the station-
ary solution, neglect non-Markovian contributions to the
equation of motion. Furthermore, neglecting off-diagonal
elements of the RDM between anionic and neutral con-
figurations, as well as between nondegenerate eigenstates,
and disregarding nonenergy conserving contributions, the
anionic and neutral-state components read
 

�Ltun��11 �
X

��L;R;���

	2���in�00P � � P ��00��yin �

� �P ��
�
out�11 � �11��youtP ��
;

�Ltun����
0

00 �
X

��L;R

P �	�
�
out�11 � �11��yout

� 2���in�00 � �00��yin �
P �0 ;

(7)

with rate matrices for tunneling into/out of the molecule
 

��in �
��
2

X
m;n;���

jmihn; �jf�eVg � �nm�hmjn; �i;

��out �
��
2

X
m;n;���

jn; �ihmj � ��yin :

(8)

Here f��� is the Fermi function, and �� � �2�=@�D�jvj
2

is the bare electronic rate, with D� the density of states in
lead � at the Fermi energy. For convenience we assumed
equal frequencies !0 � !1 of the neutral and anionic
potential, and hence �nm � @!0�m� n�; calculations for
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!0 � !1 yielded no qualitative changes. Furthermore, we
shifted the electrochemical potential eVg � �a ! eVg in
the argument of the Fermi function. The overlap matrix
elements hmjn; �i of the vibrational states of the neutral
and charged configurations, known as Franck-Condon fac-
tors, determine, together with energy resonance conditions,
the transition rates (8) and thus the transport characteristics
of the junction. While the Franck-Condon factors are fixed
by the adiabatic potentials, the bias and gate voltages in-
fluence the resonance conditions.

To describe relaxation and dephasing, we consider the
case of an Ohmic bath with spectral density J�!� � m	!,
where 	 is the damping coefficient [18]. Along the same
lines as for the tunneling term we find
 

�Ldamp��11��
i	
2@
	x;fp;�11g


�
	m!0

@

�
�N�

1

2

�
�x;	x;�11
�;

�Ldamp����
0

00 ��
i	
2@

P �	x;fp;���
0

00 g
P �0

�
	m!0

@

�
�N�

1

2

�
P ��x;	x;�

��0
00 
�P �0

�8	
kBT
@!0

�2�P����
0

00 P��P����
0

00 P��;

(9)

where �N�!� is the Bose distribution function. Note the

occurrence of a term responsible for pure interwell dephas-
ing and proportional to T and �2 in the expression for
�Ldamp��00.

Since we are interested in the long-time properties, we
look for solutions of the stationary problem L�stat � 0.
Given the stationary RDM �stat we calculate the stationary
current as the trace over the system degrees of freedom of
the left or right current operators, Istat � Trsys	�statÎL
 �
Trsys	�statÎR
, with, e.g.,

 

ÎL �
X
���

	2j0ih0j�P ��
L
in � �Lyin P ��

� j1ih1j�P ��
L
out � �LyoutP ��
: (10)

We stress that not only populations but also coherences of
the RDM in the (� ) basis contribute to Istat.

In the first column of the left side of Fig. 2 we present the
results of our calculation of the gate- and bias-dependent
current for decreasing temperature (from bottom to top).
Besides the evidence of a Franck-Condon blockade [7,8]
(where due to an exponential suppression of the Franck-
Condon factors hmjn; �i transport is blocked and the
Coulomb diamonds no longer close) and current steps
due to phononic excitations, Fig. 2 shows an increasing
asymmetry in the gate voltage Vg with decreasing tempera-
ture. To understand the origin of this asymmetry, we depict
in the second and third column of the left side of Fig. 2 the

FIG. 2 (color online). Left-hand side: onset of the dynamical symmetry breaking with decreasing temperature (in units of @!0=kB)
from bottom to top. The columns show the absolute value of the stationary current and the parity of the neutral and anionic state as a
function of the gate voltage Vg and the bias �V across the molecular junction, both in units of @!0=e. The other parameters are
	 � 0:01!0, �L;R � 0:1!0, � � 3

���������������
@=m!0

p
. Right-hand side: rates scheme at the even (a) and odd (b) transition points [corresponding

to the points marked by (a) and (b) in the upper middle panel of the figure to the left]. The horizontal lines mark the electromechanical
states of the neutral and anionic configuration with green (blue) color representing the even (odd) parity. Straight arrows represent
transitions due to the coupling to the leads: the rate is qualitatively expressed by the thickness of the line. Dashed arrows show
transitions lifting the blocking character of the ground states and are crucial for the understanding of the symmetry breaking transition.
Wavy arrows represent the effect of the phononic bath.
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parities of the neutral and anionic state defined as

 P0�
XN
n�0

	h0;e;nj�j0;e;ni�h0;o;nj�j0;o;ni
;

P1�
X1
n�0

	h1;2nj�j1;2ni�h1;2n�1j�j1;2n�1i
;

(11)

where the even or odd states of the neutral molecule are

 j0; e=o; ni �
1���
2
p �jn;�i � ��1�njn;�i�: (12)

In the parameter region where the current becomes asym-
metric with respect to Vg, degenerate states are differently
populated, i.e., a dynamical symmetry breaking (DSB) in
the occupation of the even or odd states occurs. In the
regions of defined parity (warm colors for even, cold for
odd) the system exhibits spatial coherences in the (�) basis
cf. Eqs. (8) and (9). In contrast, we find that in the even or
odd basis coherences are decoupled from populations and
vanish for the stationary density matrix. The onset of these
even or odd parity regions in the gate-bias voltage plane
can be understood in terms of transition rates between the
different vibrational states of the molecule (see the right
side of Fig. 2). At zero bias, energy conservation prevents
any transition from the neutral (even or odd) or anionic
ground states to occur. These states are thus blocking
states. In particular, for positive gate voltages the molecule
is neutral and dephasing ensures equilibration of the even
and odd populations of the degenerate ground state (P0 �
0). At negative gate voltages the molecule is charged and
dissipation ensures relaxation predominantly to the anionic
ground state (P1 � 1).

The situation changes for combinations of bias and gate
voltages that allow current to flow: the electromechanical
system is maintained out of equilibrium by the applied
voltage. Now the parity of the anionic state fluctuates
due to population of the higher excited states, and the
distribution of the populations no longer corresponds to
the thermal distribution in equilibrium with the bath.

The sign of the neutral-state parity depends on the
particular rate configuration. Though a quantitative predic-
tion relies on the solution for �stat, it is possible to under-
stand the sign of the neutral-state parity with simple
arguments. In the right side of Fig. 2 a representation of
the electromechanical rates for two specific cases is re-
ported. Despite the complexity of the scheme, only few
lines are crucial: these are the two red dashed arrows
representing the rates which lift the blocking character of
the neutral ground states. In the case (a) the neutral odd
ground state can be depopulated resulting in an even parity
of the stationary state. In case (b) the neutral even ground
state is involved leading to an odd parity of the stationary
state. These unblocking rates represent the bottleneck in

the DSB and are competing with the dephasing generated
by the heat bath (wavy line joining the even and odd sector
of the neutral state). The intensity of the unblocking rates
depends on the Franck-Condon factors of the vibrational
wave functions involved. A comparison with the dephasing
rate allows to estimate the transition temperature Ttr as
kBTtr � @!0�ub=�4�

2	�, where �ub is the unblocking rate
(i.e., the depopulation rate of the relevant neutral ground
state). The even transition (a) involves a larger �ub: it is
more robust and occurs at higher T (compare first and
second panel in the central column of the left side of
Fig. 2).

To summarize, we analyzed the dynamics of a molecular
junction in the single-electron transport regime. The mole-
cule possesses quasidegenerate vibrational eigenstates in
the neutral configuration and no degeneracy in the anionic
case. Tunneling processes charging and discharging the
molecule preserve the parity of the wave functions. As a
consequence, unequal occupation of degenerate molecular
neutral states occurs. An explanation of this effect in terms
of unblocking rates is given.
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