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Quantum Hall Ferromagnetism in Graphene
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Graphene is a two-dimensional carbon material with a honeycomb lattice and Dirac-like low-
energy excitations. When Zeeman and spin-orbit interactions are neglected its Landau levels are
four-fold degenerate, explaining the 4e2/h separation between quantized Hall conductivity values
seen in recent experiments. In this paper we derive a criterion for the occurrence of interaction-
driven quantum Hall effects near intermediate integer values of e2/h due to charge gaps in broken
symmetry states.

PACS numbers: 72.10.-d,73.21.-b,73.50.Fq

Introduction— Two-dimensional graphite (graphene) is
a gapless semiconductor with a honeycomb lattice and
an unusual massless Dirac-fermion band structure[1] that
has long attracted theoretical attention. The topology of
its Bloch states leads to large momentum-space Berry
phases[2], quantized and half-quantized Hall effects, and
a vanishing density of states at the neutral Fermi en-
ergy which qualitatively alters the way in which electron-
electron interactions[3] influence electronic properties.
The integer quantum Hall effect in graphene is expected
to be unusual because its Landau levels are widely sepa-
rated and fourfold degenerate in the absence of weak Zee-
man and spin-orbit interactions. Interest in graphene has
increased recently because of experimental progress[4],
including the discovery of the integer quantum Hall
effect[5] with quantized values of the Hall conductivity
(σxy = 4(n + 1/2)(e2/h)) separated by 4e2/h. In this
Letter we address the quantum Hall effects that should
occur at intermediate integer values of filling factor ν,
giving rise to plateaus at σxy = ν(e2/h), in principle
for all integer values of ν. These additional plateaus are
expected to arise from charge gaps induced by electron-
electron interactions, but have not yet been observed.
They would be a new example[6] of the enhanced inter-
action physics that occurs at integer filling factors in a
strong magnetic field whenever N ≥ 2 Landau levels are
degenerate or nearly degenerate. At integer filling fac-
tors the mean-field-theory scenario in which symmetries
are broken to open gaps between quasiparticle orbitals
usually applies. The ground state is then well approxi-
mated by an unrestricted Hartree-Fock state[7] in which
an integer number i < N of Landau levels associated
with orthogonal SU(N) spinors is occupied. The phe-
nomenon of interaction induced gaps and broken symme-
tries at integer filling factors is known as quantum Hall
ferromagnetism. The four-fold degeneracy of graphene’s
Landau levels follows from approximate spin-degeneracy
and from Bloch state degeneracy between two inequiva-
lent points in the honeycomb lattice Brillouin zone. The
low-energy physics of graphene is well described[3] in a
four-component spinor envelope-function formalism with
SU(4) invariant electron-electron interactions. Graphene

is therefore a good example of SU(4) quantum Hall
ferromagnetism[8], much more accurately approximating
this symmetry than bilayer electron systems[9] for exam-
ple. The absence of additional integer Hall plateaus due
to quantum Hall ferromagnetism in all but the most re-
cent samples is almost certainly due to disorder. Fig. 1
summarizes the estimate of the minimum sample mo-
bility required to see quantum Hall ferromagnetism in
graphene which is explained below.
Massless Dirac-Weyl quasiparticles— The ~k · ~p Hamilto-
nian of the graphene bands is

H0 = v(px + eAx)τzσx + v(py + eAy)σy (1)

where τz = ± labels the two-degenerate (K and K ′) val-
leys, σα are Pauli matrices that act in the space of the
two-atoms per unit cell, and ~A(~r) is the vector poten-
tial. In the zero field case, the Hamiltonian (1) has lin-
ear dispersion E = ±v~k for both spin states and for
both K and K ′ valleys. In a magnetic field the spec-
trum of H0 consists of four-fold degenerate (including
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FIG. 1: Phase Diagram for SU(4) quantum Hall ferromag-
netism in the n = 0 and n = 1 Landau levels of graphene.
In our model the ordered region is bounded by a maximum
value of νs, the ratio of the density of Coulomb scatterers
to the density of a full Landau level. νs is inversely propor-
tional to the product of the sample mobility and the external
field strength and order near integer filling factors requires the
minimum values for this product indicated on the right-hand
vertical axis.
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spin) Landau level branches with En = ±~v
√

2n/ℓ as in-
dicated in the inset in Fig.1. For n = 0 eigenfunctions
of different valleys are localized on different honeycomb
sublattices while for n 6= 0, they are symmetric or anti-
symmetric combinations of two-dimensional-electron-gas
Landau level n states on one sublattice and level n + 1
states on the other sublattice. The spin degeneracy is
lifted by weak Zeeman coupling that we neglect for the
moment.
Stoner Criterion— The simplest approximation[10] for
interacting electrons in a strong magnetic field is one
in which interactions are treated in the Hartree-Fock
approximation and disorder in the self-consistent Born
approximation[10](SCBA). In the strong field limit the
total energy in this approximation is given by

E

Nφ
=

4
∑

σ=1

[

∫ µσ

−Γ

dE E A(E) − X

2
ν2

σ ] (2)

where Nφ is the orbital Landau level degeneracy, µσ is
the Fermi level for spinor-component σ,

X =

∫

d2~q

(2π)2
Vint(~q) exp(−q2ℓ2/2) F 2(~q) (3)

is the exchange integral, ℓ = (~c/eB)1/2 is the magnetic
length, and F (~q) is a form factor we will discuss later.
In the SCBA the Landau level spectral function has the
form

A(E) =
2

πΓ
[1 − (E/Γ)2 ]1/2, (4)

where Γ is the Landau level width[10]:

Γ2

4
= ns

∫

d2~q

(2π)2
|Udis(~q)|2 exp(−q2ℓ2/2) F 2(~q) (5)

which is estimated below. In Eqs.(3) and (5) Vint(~q)
and Udis(~q) are the Fourier transforms of the electron-
electron interaction and the disorder potential and ns

is the density of disorder scatterers. In the case of
graphene the spinor index σ runs over four possible val-
ues. These expressions assume perfect SU(4) invariance
of the disorder-scattering and electron-electron interac-
tions. While this is certainly an approximation, we be-
lieve it to be an excellent one. They also assume that
spatial invariance is recovered after disorder averaging,
so that the electron density matrix is diagonal in its or-
bital labels and the energy simply proportional to the
number of orbitals in a Landau level Nφ. In Eq.( 2) the
νσ values are the eigenvalues of the density matrix in
spinor space,

νσ =

∫ µσ

−Γ

dE A(E), (6)

which are invariant under unitary transformations of
the four-dimensional spinor-space, consistent with SU(4)
symmetry.

In the normal state the four (nearly) degenerate Lan-
dau levels are equally occupied. To look for broken sym-
metry states we write νσ = νT

4
+δνσ where νT = N/Nφ is

the total filling factor in the four-fold degenerate Landau
level of interest. Expanding to second order in δνσ and
using that

∑

σ δνσ = 0 we find that

E

Nφ
=

∑

σ

[

∫ µ0

−Γ

dE E A(E) − X

8
ν2

T

]

+
∑

σ

δν2
σ

2

[ 1

A(µ0)
− X

]

+ . . . (7)

where µ0 is the normal state Fermi level. The normal
state is unstable when the second term in square brack-
ets is negative, in other words when XA(µ0) > 1. This
criterion for quantum Hall ferromagnetism is closely anal-
ogous to the Stoner[11] criterion for ferromagnetism in
metals, and has been successfully applied[12] to under-
stand the appearance of spin-splittings at odd integer
filling factors in a semiconductor two-dimensional elec-
tron gas. In the case of quantum Hall ferromagnetism
(QHF) the exchange energy competes with disorder en-
ergy rather than with band energy. We can apply the
QHF Stoner criterion to graphene by relating the dis-
order potential to the zero-field mobility of graphene, a
quantity that is conveniently available from experiment.
Zero-Field Mobility and Coulomb Scattering—We start
from the Boltzmann transport theory expression for the
conductivity, applied to the four-fold degenerate Bloch
bands of graphene:

σB=0 =
e2τv2D(EF )

2
=

e2

h

2EF τ

~
(8)

where τ is the scattering rate,

τ−1 =
nskF

2π~2v

∫ 2π

0

dθ |Udis(q)|2 (1 − cos θ)
(1 + cos θ)

2
(9)

θ is the scattering angle, kF is the Fermi wavevector
and q = 2kF sin(θ/2) is the scattering wavevector on
the circular two-dimensional Fermi surface. The last
θ-dependent factor in Eq.( 9) is non-standard and is
due to the wavevector dependence of the relative phase
of graphene Bloch band wavefunctions on the two sites
within its honeycomb lattice unit cell. The factor of
kF in Eq.( 9) reflects the density dependence of the
density-of-final states for elastic scattering of Fermi sur-
face quasiparticles. For short-range scatterers the inte-
gral in Eq.( 9) remains finite as density ∝ k2

F vanishes.
Since D(EF ) is proportional to kF for two-dimensional
Dirac bands, Eq.( 9) implies a conductivity that is inde-
pendent of kF and therefore independent of carrier den-
sity. Indeed theoretical studies of the conductivity of
graphene[13] predict that the conductivity has a weak
density dependence, remaining finite as kF → 0. Ex-
periment, on the other hand, finds that the mobility
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µ = −σ/ne in graphene is nearly constant except at very
low-densities and that it has values ∼ 104cm2V−1s−1 in
samples that are sufficiently high quality to exhibit the
integer quantum Hall effect. Evidently quasiparticle scat-
tering amplitudes are enhanced at lower densities in such
a way as to convert the k+1

F dependence of the scatter-
ing rate in Eq.( 9) to a k−1

F dependence. One plausible
explanation for this behavior is that Dirac band quasi-
particle scattering is dominated by Coulomb scattering
from charged defects near the graphene plane. For two-
dimensional graphene Udis(q) = VC(q) = 2πe2/q. Insert-
ing this expression in Eq.( 9) we obtain that

EF τ

~
=

n

ns

4

πg2
(10)

where g = e2

~v ∼ 3 is the effective fine structure constant

used to characterize the ratio of Coulomb interaction and
band energy scales in graphene. In Eq.( 10) nS should be
thought of as the density of Coulomb scatterers that are
located in the substrate within a Fermi wavelength of the
graphene plane. The influence of more remote scatterers
is suppressed by the factor exp(−qd) that appears in the
two-dimensional Fourier transform of the Coulomb inter-
action. Inserting Eq.( 10) in Eq.( 8) we find that mobility

µ ∼ 170 cm2V−1s−1

ns [1011cm−2]
. (11)

In systems with Coulomb electron-electron or electron-
impurity interactions screening normally plays an es-
sential role, changing long-range interactions into short-
range ones. In a static approximation, the screened dis-
order potential in graphene is

Usc(q) =
2πe2

q + 2πe2Π(q)
(12)

where Π(q) is the polarization function of the graphene
Dirac bands. Screening does not change the density de-
pendence of the conductivity in graphene because Π(q)
also scales like kF . The influence of screening on the
mobility can be estimated by making a Tomas-Fermi
approximation, replacing Π(q) by Π(q = 0) = D(EF ).
When the coupling constant g is much larger than 1
Usc(q) ≃ (~vπ)/(2kF ) and

EF τ

~
≃ n

ns

64

π
(13)

yielding a value for the mobility that is 16g2 times larger
than the unscreened value. We note that g cancels in
Eq.( 13), which is fortunate because its effective value
can be influenced by non-universal substrate dielectric
screening. Corrections to Eq.( 13) becomes impotant for
g < 1. We can use these expressions to extract a value
for the density of scatterers ns from measured mobili-
ties. This procedure might retain partial validity, de-
pending on the details, even if the limiting scatterers

are not Coulombic. Similar density dependence could
in principle arise from a partially accidental combina-
tion of disorder sources that gives rise to a similar in-
crease in transition rates at small wavevectors, or from
strong short-ranged scattering that approaches the uni-
tary limit. Other potential disorder sources include ran-
dom crumpling of the graphene sheet and coordination
defects in the graphene sheet that give rise to long range
strain fields. The procedure we now use to translate be-
tween zero-field mobilities and strong-field Landau level
widths will retain its validity in some, but not all, plausi-
ble scenarios. In particular the values of µB at the stoner
phase boundary are likely to be similar for Coulomb and
topological defect scatterng[14].
Self-Consistent Screening in a Magnetic Field— We are
now in a position to estimate the Landau level width and
apply the Stoner criterion. For Coulomb scattering

Γ2

4
= ns

∫

d2~q

(2π)2

∣

∣

∣

∣

2πe2

q + 2πe2Π(~q)

∣

∣

∣

∣

2

exp(−q2ℓ2/2) F 2(~q).

(14)
Notice that Γ2 diverges if we neglect screening. We
now need to specify the form factor F (q). Taking the
Coulomb interaction to be diagonal in honeycomb lattice
site index it follows[10] that the form factor F (q) ≡ 1 for
n = 0 and that

F (q) =
1

2

[

L|n|(q
2ℓ2/2) + L|n|−1(q

2ℓ2/2)
]

(15)

for n 6= 0. If the magnetic field is strong enough to ne-
glect coupling between different Landau levels the normal
state polarization function Π(q)| is given approximately
by

Π(q) ≈ 4 exp(−q2ℓ2/2)

2πℓ2
A(µ0). (16)

The factor of 4 in Eq.( 16) is the graphene Landau level
degeneracy and the factor exp(−q2ℓ2/2) accounts for the
orbital character of Landau level wavefunctions. Since
A(µ0) is proportional to Γ−1, Eq.( 14) must be solved
self-consistently[15] giving rise to the following implicit
equation for Γ̃ ≡ Γ/(e2/ℓ):

1 = 4νs

∫ ∞

0

dx
F 2 exp(−x2/2)

[

Γ̃x + F 24Ã0 exp(−x2/2)
]2

. (17)

In Eq.( 17) Ã0 ≡ ΓA(µ0) and νs = 2πℓ2ns is the ‘filling
factor’ of scatterers. Note that since the right hand side
of Eq.( 17) is a monotonically increasing function of νs

and a monotonically decreasing function of Γ̃, Γ̃ must
increase monotonically with νs.
Graphene QHF Phase Boundary— The Stoner criterion
can be written in terms of Γ̃, Ã0, and the dimensionless
exchange integral

X̃ ≡ X

e2/ℓ
=

∫ ∞

0

dx
Γ̃xF 2 exp(−x2/2)

Γ̃x + 4Ã0F 2 exp(−x2/2)
(18)
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In the absence of screening (large Γ̃), X̃ =
√

π/2 for

n = 0 and X̃ = (11/16)
√

π/2 for n = 1. The Stoner
criterion,

X̃Ã0/Γ̃ > 1, (19)

is satisfied for νs > ν∗
s . Since νs ∝ ns/B ∝ 1/µB,

our Stoner criterion specifies the minimum values for the
product of field and mobility illustrated in Fig. 1:

B [10Tesla] µ [104cm2V−1s−1] & 1/ν∗
s (νT ). (20)

The origin of the weaker tendency to ordered states in the
four-fold degenerate n = 1 Landau level is the difference
in form factor F (q).
Discussion— Although the Stoner criterion can be ap-
plied at all filling factors and provides a reasonable as-
sessment of the crossover between interaction dominated
and disorder dominated physics, we caution that the sim-
ple quantum Hall ferromagnet states can occur only at
integer values of the total filling factor. We expect the
emergence of interaction-driven gaps at intermediate in-
teger filling factors to be the first signal that sample
quality is adequate to see interaction dominated physics.
Judging by the relative size of charge gaps at integer
and fractional filling factors, we expect that the first
fractional filling factors will require mobilities approxi-
mately five times larger than those required to realize
quantum Hall ferromagnetism; the SU(4) nature of these
Landau levels will open up a new frontier for the frac-
tional quantum Hall effect that is likely to yield some
surprises. We have so far neglected the Zeeman energy
because it is much weaker than the competing disorder
and interaction energy scales and will have little influ-
ence on whether or not quantum Hall ferromagnetism
occurs. (The Zeeman energy is ∼ 1meV at ∼ 10Tesla
compared to a n = 0 Landau level interaction energy
scale ∼ 100meV depending on the degree of substrate di-
electric screening.) When quantum Hall ferromagnetism
does occur, however, the Zeeman energy will play a larger
role. For ν = ±1, in particular, the Zeeman energy will
select ordered states that are spin-polarized, and break
symmetry in the SU(2) valley space. The interaction
terms in graphene should be weakly dependent on valley
index, because interactions on the same graphene sublat-
tice should be more strongly repulsive than interactions
between sublattices at short distances, reducing the bro-
ken symmetry to U(1). For this reason, we anticipate
that the ν = ±1 quantum Hall ferromagnet in graphene
should have a Kosterlitz-Thouless phase transition at a
low temperature. Finally we compare our result with
the recent experiment[6] that has reported quantum Hall
ferromagnetism in graphene. The mobility of the sample
used in [6] is µ = 5 × 104[cm2/V s]. Fig.[ 1] indicates
that for this mobility and ν = ±1 the symmetry breaks
at 17T in agreement with experiment[6]. The appear-
ance of quantum Hall plateaus observed at ν = ±4, in

the middle of the four-fold degenerate n = ±1 Landau
levels at around 30Tesla is also in reasonable agreement
with Fig.[ 1] giving the critical field 40T. The influence
of dielectric screening on our phase diagram, which we
expect to be rather weak, and of screening due to vir-
tual inter-Landau-level transitions, which we expect to
be important at larger n, will be discussed in subsequent
work.
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