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Abstract

In past decades the scientific community has been looking for a reliable first-principles method

to predict the electronic structure of solids with high accuracy. Here we present an approach which

we call the quasiparticle self-consistent GW approximation (QPscGW ). It is based on a kind of

self-consistent perturbation theory, where the self-consistency is constructed to minimize the per-

turbation. We apply it to selections from different classes of materials, including alkali metals,

semiconductors, wide band gap insulators, transition metals, transition metal oxides, magnetic

insulators, and rare earth compounds. Apart some mild exceptions, the properties are very well

described, particularly in weakly correlated cases. Self-consistency dramatically improves agree-

ment with experiment, and is sometimes essential. Discrepancies with experiment are systematic,

and can be explained in terms of approximations made.
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The Schrödinger equation is the fundamental equation of condensed matter, and the im-

portance of being able to solve it reliably can hardly be overestimated. The most widely

used theory in solids, and now in quantum chemistry, is the celebrated local density approx-

imation (LDA)[1]. In spite of its successes, it is well known that the LDA suffers from many

deficiencies, even in weakly correlated materials (see Figs. 1 and 2). This has stimulated

the development of flavors of extensions to the LDA to redress one or another of its failures,

such as the LDA+U method. Each of these methods improves one failing or another in the

LDA, but they often bear a semi-empirical character, and none can be considered universal

and parameter-free. Thus we are far from a precise and universally applicable theory for

solids, with attendant limits their ability to predict materials properties.

The random phase approximation (RPA) or GW approximation (GWA, G=Green’s func-

tion, W=screened coulomb interaction) of Hedin[2] is almost as old as the LDA. A major

advance was put forward by Hybertsen and Louie[3] when they employed LDA eigenfunc-

tions to generate the GW self-energy Σ = iGW , and showed that fundamental gaps in sp3

bonded materials were considerably improved over the LDA. Since that seminal work, many

papers and some reviews[4, 5, 6] have been published on GW theory and extensions to

it. One problem that has plagued the GW community has been that calculated results of

the same quantities tend to vary between different groups, much as what occurred in the

early days of the LDA. This is because further approximations are usually employed which

significantly affect results. Almost ubiquitous is the 1-shot approximation where (following

Hybertsen) Σ ≈ iGLDAW LDA: i.e., Σ is computed from LDA eigenfunctions. However, there

is an emerging consensus[7, 8, 9, 10, 11, 12] that, when cores are treated adequately[11],

GLDAW LDA bandgaps are underestimated even in (weakly correlated) semiconductors. (see

top panel of Fig. 1; note especially CuBr).

In general, one-shot GW approaches are rather unsatisfactory. The quality of the

GLDAW LDA approximation is closely tied to the quality of LDA starting point[11], and

is adequate to construct G and W only under limited circumstances[11]. It can fail even

qualitatively in transition-metal and rare earth compounds such as CoO and ErAs[11]. Some

kind of self-consistency is essential: the QP levels should not be an artifact of the starting

conditions. The full self-consistent GW method (full scGW ) determines G self-consistently

from Σ = iGW , which in turn generates G. Here W = v(1 − vP )−1 where P =−iG × G

and v are respectively the irreducible polarization function and (bare) Coulomb interaction.
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FIG. 1: Fundamental gaps of sp compounds from LDA (squares) and GLDAWLDA (circles) in top

panel, and from QPscGW , Eqn. (2), in bottom panel. The spin-orbit coupling was subtracted by

hand from the calculations. The GLDAWLDA gaps improve on the LDA, but are still systematically

underestimated. For QPscGW data, zincblende compounds with direct Γ−Γ transitions are shown

as green circles; All other gaps are shown as blue squares. Errors are small and highly systematic,

and would be smaller than the figure shows if the electron-phonon renormalization were included,

In the few cases where it has been applied, some difficulties were found: in particular the

valence bandwidth of the homogeneous electron gas[15] is ∼15% wider than the noninteract-

ing case, whereas the GLDAW LDA width is ∼15% narrower, in agreement with experiment

for Na (see Fig. 2). A recent (nearly) full scGW study of Ge and Si also overestimates the
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FIG. 2: Comparison of LDA (blue dashes), GLDAWLDA (red dots) and QPscGW (green lines)

energy bands in GaAs (left) and Na (right). Circles are experimental data, with spin-orbit cou-

pling subtracted by hand. The QPscGW fundamental gap and conduction-band effective mass

(Eg = 1.77 eV and m∗
c = 0.077m0) are slightly overestimated, and the optical dielectric con-

stant underestimated (ǫ∞ = 8.4): Eexpt
g (0K) = 1.52 eV, m∗,expt

c = 0.065m0, and ǫexpt
∞ = 10.8.

For comparison, EGLDAWLDA

g =1.29 eV and m∗,GLDAWLDA

c ≈ 0.059m0, while ELDA
g = 0.21 eV and

m∗,LDA
c = 0.020m0. The correspondence between QPscGW and experiment at other known levels

at Γ, L, and X, the Ga 3d level near −18 eV is representative of nearly all available data for sp

systems. For Na, the QPscGW occupied bandwidth is 15% smaller than the LDA. Circles taken

from photoemission data [13]; square from momentum electron spectroscopy [14].

valence bandwidth[7], though the fundamental gaps are well described.

In Ref. [16] we proposed an ansatz for a different kind of scGW , and demonstrated

that it radically improves the quasiparticle (QP) levels in the oxides MnO and NiO. In

this Letter, we ground the idea on an underlying principle—namely optimization of the

effective one-body hamiltonian H0 by minimizing the perturbation to it—and propose it

as a universal approach to the reliable prediction of the electronic structure. We show

that this approach, which we call the quasiparticle self-consistent GW (QPscGW ) method,

results in accurate predictions of excited-state properties for a large number of weakly and

moderately correlated materials. QP levels are uniformly good for all materials studied: not

just fundamental gaps in semiconductors but for nearly all levels where reliable experimental
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data are available. Even in strongly correlated d and f electron systems we studied, errors

are somewhat larger but still systematic.

The GW A is usually formulated as a perturbation theory starting from a non-interacting

Green’s function G0 for given one-body hamiltonian H0 = −∇2

2m
+V eff . H0 is noninteracting,

so V eff is static and hermitian but it can be nonlocal. Because the GW A is an approximation

to the exact theory, the one-body effective hamiltonian H(ω) = −∇2

2m
+ V ext + V H + Σ(ω)

depends on V eff and is a functional of it: the Hartree potential V H is generated through

G0 = 1/ (ω −H0 ± iǫ), and the GW A generates Σ(ω). H(ω) determines the time-evolution

of the one-body amplitude for the many-body system.

QPscGW is a prescription to determine the optimum H0: we choose V eff based on a

self-consistent perturbation theory so that the time-evolution determined by H0 is as close

as possible to that determined by H(ω), within the RPA. This idea means that we have to

introduce a norm M to measure the difference ∆V (ω) = H(ω) − H0; the optimum V eff is

then that potential which minimizes M . A physically sensible choice of norm is

M [V eff ] = Tr
[

∆V δ(ω −H0){∆V }†
]

+ Tr
[

{∆V }†δ(ω −H0)∆V
]

(1)

where the trace is taken over r and ω. Exact minimization M is apparently not tractable,

but an approximate solution can be found. Note thatM is positive definite. If we neglect the

second term and ignore the restriction that V eff is hermitian, we have the trivial minimum

M [V eff ] = 0 at V eff = V ext + V H + V xc where V xc =
∑

ij |ψi〉Σ(εj)ij〈ψj|. Here Σ(εi)ij =

〈ψi|Σ(εi)|ψj〉, and {ψi, ǫi} are eigenfunctions and eigenvalues of H0. The second term is

similarly minimum with Σ(εi) → Σ(εj). An average of the hermitian parts of these solutions

results in

V xc =
1

2

∑

ij

|ψi〉 {Re[Σ(εi)]ij + Re[Σ(εj)]ij} 〈ψj |. (2)

Re signifies the hermitian part. This result is the same as Eq. (2) in Ref. 16.

We identify solutions to H0 as “bare QP”, which interact via the (bare) v. The dressed

QP consists of the central bare QP plus induced polarized clouds of the other bare QPs’—

this is nothing but the physical picture in RPA to calculate poles of G from G0. In the

charged Fermi liquid theory [17] of Landau and Silin, the QP interact via v in addition

to the short-range Landau interaction (fpp′ in Ref. 17; see Eq. (3.41)). We can virtually
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construct the Landau-Silin QP from G0 by the calculation of the non-RPA contributions to

Σ. Or we can identify our bare QP as the Landau-Silin QP if we assume they are minimally

affected by such contributions.

Our QPscGW is conceptually very different from the full scGW . In the latter case the

electron-hole mediated state making P = −iG × G is suppressed by the square of the

renormalization factor Z × Z, and includes physically unclear contributions such as: QP ×

(incoherent parts) [16, 18]. P loses its physical meaning as the density response function,

P = δn/δV , but is merely an intermediate construction in the self-consistency cycle. Such

a construction does not give reasonable W even in the electron gas [15, 19], resulting in a

poor G.

We now turn to QPscGW results, focusing on the QP energies given by H0. Fig 2

shows that the QPscGW valence band in Na properly narrows relative to the LDA by 15%.

Indeed, for nearly all the sp semiconductors studied, calculated QP levels generally agree

very closely with available experimental data. The best known are the fundamental gaps,

shown in Fig. 1. QPscGW data is divided into circles for materials whose gap is a Γ − Γ

transition and squares for all other kinds. Roughly, Γ − Γ transitions are overestimated by

0.2 eV, while the remaining gaps are overestimated by 0.1 eV. Errors appear to be larger for

wide-gap, light-mass compounds (bearing elements C, N, and especially O); however, the

calculations omit reduction in the gaps by the nuclear zero-point motion. This effect has

been studied through varying isotopic mass in some tetrahedral semiconductors[20]. It is

largest for light compounds: T=0 the gap is reduced by ∼0.3 eV in diamond and ∼0.2 eV

in AlN, but <∼0.1 eV for heavier compounds. Because the renormalization been measured

only for a few cases, we do not include it here.

Apart from some mild exceptions, QPscGW generates a consistently precise description of

the electronic structure in sp systems, including other known excitations. This is illustrated

in Fig. 2, where GaAs was chosen because of the abundance of available experimental data.

It is notable that the errors are not only small, but unlike the GLDAW LDA or LDA, they are

highly systematic: compare, for example, the fundamental gaps (Fig. 1). We may expect that

the bandgaps should be overestimated, because the RPA dielectric function omits electron-

hole correlation effects. Thus ǫRPA should be too small and under-screen W . Indeed, the

optical dielectric constant ǫ∞ is systematically underestimated slightly (Fig. 2). Similar

consistencies are found in the effective masses. The conduction-band mass at Γ, m∗,QPscGW
cΓ
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consistently falls within a few percent of experimental data for wide-gap materials, but as

the gap becomes smaller (induced by, e.g. scaling Σ), m∗,QPscGW
cΓ /m∗,expt

cΓ scales essentially

as the ratio of the QPscGW gap to the experimental one, as expected when the gap become

small. Taking data for GaAs from Fig. 2 for example, we obtain EQPscGW
g /Eexpt

g = 1.16, and

m∗,QPscGW
cΓ /m∗,expt

cΓ = 1.18.

TABLE I: Valence d bandwidths Wd (calculated at Γ for Ti,Cr, and Co, and at N for Fe, and

at X for Ni), relative position of s and d band bottoms ǫsd, splittings ∆Ex between majority and

minority d (or f) states, and magnetic moments in 3d compounds and Gd.

Wd (eV) ǫsd (eV)

LDA QPscGW Expt LDA QPscGW Expt

Ti 6.0 5.7 3.5 4.3

Cr 6.6 6.2 3.5 4.3

Fe 5.2 4.6 4.6 3.6 4.4 4.6

Co 4.1 3.8 3.7 4.6 5.3 4.9±1

Ni 4.4 4.0 4.0 4.4 5.0 5.5

moment (µB) ∆Ex (eV)

LDA QPscGW Expt LDA QPscGW Expt

Fe 2.2 2.2 2.2 1.95 1.67 1.75

Co 1.6 1.7 1.6 1.70 1.21 1.08

Ni 0.6 0.7 0.6 0.6 0.5 0.3

MnO 4.5 4.8 4.6

NiO 1.3 1.7 1.9

MnAs 3.0 3.5 3.4

Gd 7.7 7.8 7.6 4.9 16.1 ∼12.1

Table I shows that the 3d bandwidth, the relative position of s band, exchange split-

tings ∆Ex, are systematically improved relative to the LDA in elemental 3d metals, and

Gd. QPscGW magnetic moments are systematically overestimated slightly. ∆Ex is over-

estimated in Ni, presumably owing to the neglect of spin fluctuations[21]. QPscGW also

predicts with reasonable accuracy the QP levels of all magnetic 3d compounds studied, in

particular correlated oxides such as MnO and NiO where the LDA fails dramatically. As
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might be expected, the accuracy deteriorates somewhat relative to sp systems. For example,

the QPscGW optical gap in NiO (4.8 eV) was found to be larger than experiment (∼4.3 eV).

Table I compares the magnetic moments, and Ref. [16] shows in detail the QP levels are

consistently well described. However, for Gd, (and for GdP and GdAs) QPscGW overesti-

mates the position of the (empty) minority Gd f shell by ∼4 eV, and hence the exchange

splitting ∆Ex.

−4 0 4 8 12 160
20
40
60
80

100 LDA
GW(ε)
QPscGW
Expt

FIG. 3: DOS in CeO2. Black dots are PES+BIS data[[22]]. Calculated DOS were broadened with

Gaussian of width 0.35 eV. GLDAWLDA+eigenvalue-only self-consistency (dotted red line) severely

overestimates the position of the Ce f level, while it is slightly overestimated by QPscGW (green

line). Broadening of the valence bands relative to LDA is found in all oxides studied, e.g. MgO

and TiO2, and has important consequences, e.g. in determining valence-band offsets.

Nonmagnetic oxides SrTiO3, TiO2, and CeO2, with conduction bands of d or f character,

overestimate fundamental gaps slightly more than their sp counterparts. The QPscGW

gaps were found to be 4.19 eV and 3.78 eV in SrTiO3 and TiO2, ∼0.8 eV larger than the

experimental gaps (∼3.3 eV and ∼3.1 eV). Fig. 3 compares the QPscGW DOS of CeO2

with spectroscopic data: the Ce f band is similarly overestimated by QPscGW . This

is reasonable, because electron-hole correlation effects are stronger in the narrow d (f)

conduction bands. Fig. 3 also shows DOS computed by GLDAW LDA, but with eigenvalue-

only self-consistency, where only the diagonal part in Eq. (2) is kept. This constrains the

eigenfunctions to the starting (LDA) eigenfunctions; thus the charge and spin densities

do not change. While the off-diagonal parts of Σ add a small effect in, e.g. GaAs, their

contribution is essential in CeO2, even though the occupied states contain only a small

amount of Ce f character.

To summarize, the QPscGW theory (apart from some mild exceptions) appears to be

an excellent predictor of QP levels for a variety materials selected from the entire periodic
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table. Self-consistency is an essential part of the theory. From the results obtained so far, this

approach shows promise to be universally applicable scheme, sufficient in its own right for QP

levels in many materials. In contrast to the LDA or any other popular theory of electronic

structure of solids in the literature today, the method is truly ab initio with errors that are

generally small and highly systematic across many different materials classes. The errors can

be attributed missing electron-hole correlation contributions to ǫ. When better calculations

are necessary (usually where the physics lies completely outside the domain of a one-particle

picture, such as the description of excitons, multiplets, or Mott transitions), QPscGW can

be taken as an optimum starting point where the relevant many-body contributions to the

hamiltonian are (nearly) as small as possible. The systematic character of the error suggests

that the dominant terms left out can be described by a few diagrams, in particular the

ladder diagrams coupling electrons and holes; the smallness of the error suggests that the

additional terms can be added as a perturbation around the QPscGW H0, without the need

for further self-consistency.

This work was supported by ONR contract N00014-02-1-1025 and BES Contract No.

DE-AC04-94AL85000.
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