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We study the spreading dynamics on graphs with a power lanededjstributionp, ~ £77 with 2 < v <

3, as an example of a branching process with diverging remtogunumber. We provide evidence that the
divergence of the second moment of the degree distribuiories as a consequence a qualitative change in
the growth pattern, deviating from the standard exponkegt@wth. First, the population growth is extensive,
meaning that the average number of vertices reached by tbadipg process becomes of the order of the graph
size in a time scale that vanishes in the large graph sizé IBeicond, the temporal evolution is governed by a
polynomial growth, with a degree determined by the charitie distance between vertices in the graph. These
results open a path to further investigation on the dynaamicsetworks.

PACS numbers: 89.75.-k, 87.23.Ge, 05.70.Ln

Branching processes model the evolution of populationgharacteristic time separating the exponential and paohjab
whose elements reproduce generating new elemiznis [1, 2gimes and the polynomial degree depend on the characteris
such as a population of physical particlesl[3, 4], cells 2], tic distance between vertices. More important, in the liofit
infected individualsl[5]. A key magnitude determining the infinite graph sizes the exponential regime is virtuallyeatis
dynamical evolution of the population size is the average reindicating that the polynomial regime is a novel and chamact
productive numbeR, giving the number of secondary parti- istic feature of the spreading dynamics on graphs with degre
cles generated by a primary particle. When< 1 the aver- exponent < ~ < 3, and more generally of branching pro-
age number of new elements decreases exponentially, whilgesses with an unbounded average reproductive number.
it grows exponentially whes < R < oo []. On the other
hand, it has been recently found thatmay be unbounded ~ Consider a spreading process on a graph with a tree-like
for branching processes taking place on graphs with a powettructure. At; = 0 a vertex selected at random |s.|nfected by
law degree distributiori [5] 6 7, &, 9], where by unbounded we “Virus”, which can then propagate to other vertices thtoug
mean that? diverges with increasing graph size. This obser-the graph edges. The causal tree representing the spreading
vation is extremely important since several graphs reptese Process can be modeled as a branching process. Each vertex
ing interactions among human or computers are characteerizé" the causal tree represents an infected vertex in thenadigi
by a power law degree distribution_[10,] 11] 12| 13, 14], re-graph, and each arcin the causal tree represents the generat
quiring us to consider branching processes with an unbaiind®f a secondary infected vertex from a primary infected verte
average reproductive number. The out-degree of a vertex in the causal tree gives the num-

Barthélemyet al [18] have recently studied the spreading ber of other vertices it infectg,e. its reproductive number.
dynamics of an infectious disease on a graph with a poweln turn, the length of an arc AB in the causal tree gives the
law degree distribution. Using a mean-field approach they@enerationtime, the time elapsed from the infection of ifie p
obtained that the average number of infected vertices growdary case A to the infection of the secondary case B. Finally,
exponentially in time with a characteristic time~ (k2)~!, the vertex generation coincides with the topolpglcal dista
where (k2) is the second moment of the degree distributionfrom the first infected vertex, the root, in the original gnap

~ - i I i
Py For gr‘?‘phs whergy, ~ k . W'th 2 ST 3 the §econd We assume that the reproductive numbers are independent
moment diverges and — 0 with increasing graph size, pre-

dicting that all vertices will be instantaneously infecfa&]. random variables with the probabllltydlstrlbuthﬁ) and av-

A disease that spreads at constant rate, however, caneatspr erage reproductive numbét® = 3, ¢\ k, parametrized

to all vertices in a time scale much smaller than the invefse oby the generatior. The parametrization hyis introduced to

the spreading rate, indicating that the predicted expdalent take into account that the degree distribution may chargge si

growth should not dominate the system’s dynamics. nificantly from generation to generatian [7 16]. We also as-
In this work we study branching processes with an un-sume that the generation times are independent random vari-

bounded average reproductive number using a spreading prables with the distributiod(®) (7) and the probability density

cess on a graph as a case study. When the degree distributioft) (r) = dG(@(r)/dr. Let P\"(t) be the probability dis-

has the power law taib, ~ k=7 with 2 < v < 3 we ob- tribution of the number of verticed' that are found at time

tain that the exponential regime is followed by a polynomialin a branch of the causal tree, given that branch is rooted at a

growth in time, a result that is completely unexpected basedertex at generatiod. Because of the tree structure we can

on previous mathematical studies. We also show that both therite the recursive relation
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with the boundary conditiom(vD)(t) = dn,1, WhereD is the
maximum distance between two vertices on the graph. The
sum ovetrk runs over the possible reproductive numbers of the
reference vertex, while the sum ovd%, i = 1,...,k, runs
over the possible number of infected vertices in the branch
rooted at theth neighbor of the reference vertex. These sums
are then restricted by the Kronecker delta to configurations
satisfyingl +>.7_, N; = N. Finally, within the[- - -] we have

the probability that the branch rooted at thh neighbor has

N; infected vertices at time— 7, averaged over the generation
time distributionG (7). The product structure if(1) suggests for the reproductive number and the number of infected ver-
the use of the generating functions tices, respectively. Froni(1](3) we obtain

i (d) k (2)
k=0

S PO (3)

N=0

FD(z,t) =

t
FD(x,t) = cH®D < / dGD (1) Fa+) (g, ¢

0

) +1—-G9 (t)) , (4)

with the boundary conditiod(”)(x) = . From this equa- Next we consider the cases whei):tlie reproductive num-
tion we obtain the average number of infected vertices on theer of vertices other than the root has the same statistiop} p
branch rooted at a vertex at generatibn erties,i.e. R® = RandR¥ = Rford > 1, and (i) the
infection is transmitted from an infected vertex to a susieep
ble (not yet infected) vertex at constant raefz. This last
assumption corresponds to an exponential distributioreof g
eration times(¥ (1) = 1 — exp(—t/Tg), with average gen-
eration timel. Under these approximations frofd (6) aiH (7)

OF(D(1,t)

N = =
T
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with the boundary conditiolV(”)(t) = 1. lterating this e obtain

equation fromd = D to d = 0 we obtain the average

number of infected vertices at timg N(©)(¢), and the av- i

erage number of new vertices infected betweandt + dt, R t D 1 Rt

n(t) = AN (t) /dt, resulting in nlt) = 7 P < TG) Z a1 (%) . ®

The sum in[(B) is the Taylor series expansiorab(Rt/T¢),

D up to theD — 1 order. It actually approximates an exponential
0) . ,(1) (d) o :
; Zd ( KGRy (t)) ’ 6 function depending on the ratio of o, Where
where — % _ )
d Whent <« 7y we obtain
24 = H Ry (7)
=0 R ~ t
n(t) ~ Tg &P ((R - 1)T_G) ) (10)

is the average number of vertices at generaficemd the sec-

ond factor is the probability that the infection has reached
vertex at generatiod, where* denotes the convolution oper-
ation, for instancg® x g (t) = [ drg© ()¢ (t — 7).

becoming an exponential growth fér > 1 [f, [15]. In con-
trast, whert > 77 we obtain a polynomial growth followed
by an exponential decay:



I\lnf\

In general the time scale, depends on the graph size
Ny. For random graphs with an arbitrary degree distribution
q](co) = pk andq,(cd) = (k—1)px_1/(k) ford > 0 [[Z], resulting
in R ~ (k) andR ~ (k2), where(k) and (k2) are the first
and second moments of the degree distribution. In this case
we obtain the following scenarios:

(i) When the tail of the degree distribution decays faster
thanp, ~ k3 the diameter scales @ ~ log N, [l7], while
R is constant or approaches a constant in the large graph siz
limit. Thus, from [) it follows that

-2 | |
10
T
To ~ EG log N . (12) = 10-4 ; _
Q
In this case the exponential growth last fill~ 75, where 10-6 ! _
To — 0o whenNy — oc.
(i) When the degree distribution has the power law tail 10-8‘ 44 4852 §_|
pr ~ k77 with 2 < v < 3, the diameterD increases at I | <d> |
most aslog N [17,[1819], whileR ~ N*~7/0~1 Thus, 10-2 10-1 100 101
from (@) it follows that 2
G
log N,
7o~ Ta %810 (13)  FIG. 1: Fraction of infected nodegt) = n(t)/No as a function of

Négﬂ)/(%l) time resulting from S| model simulations on random graphih &i

I . . - . power law degree distributiop, = Ak™7, with v = 3.5 (a) and
The initial exponential growth is thus a finite size effect re . _ o 5 (). "Different symbols correspond with different graph

stricted tot < 79, wherery — 0 whenNy — oo. Following  sizes: N, = 1000 (circles), 10,000 (squares) and 100,000 (trian-
this vanishing time window the number of infected verticesgles). (a) Fory = 3.5 the spreading dynamics is characterized by an
is already of the order of the graph si3& (RR ~ Ny) and  exponential growth (line), as predicted y)10). (b) o= 2.5 the
its temporal evolution is polynomidl{lL1), with a degree de-number of new infections is better described byl (11) (lin€here

termined by the characteristic distance between verticti are some deviations at short times, but they get reducednveiteas-
underlying graph ing the graph size. The inset shows the expordenesulting from

- _ the fit of {T1) as a function of the average distafégbetween two
To check the validity of our calculations we perform numer- yqdes in the graph. The increase(i#} is obtained by increasing

ical simulations of the susceptible infected (SI) modelamr  the network size fromV, = 1000 to 10,000, and 100,000. The line
dom graphs with a power law degree distributign= Ak~". emphasizes the linear scaling betwdgmand (d).

Within this model, vertices can be in two states, susceptbl

infected, and infected vertices transmit the infectiongioheof

its neighbors at a constant raté7¢ [20]. We generate ran- representation of the Internet [23]. This network is chiac
dom graphs with a power law degree distribution using the alized by a power law degree distribution with~ 2.1 [11],
gorithm proposed in.[21]. Then we generated single outlsreakbut it also exhibits degree-degree correlations [11] armigel
on these graphs starting from one infected vertex. Finaly, degree dependent clustering coefficient [24]. Yet, theaayer
take averages over 10,000 outbreaks starting from randomiyumber of new infections is well fitted by{]11), indicatingith

selected vertices, and over 100 graph realizations. our predictions are also valid for graphs that are not random
When~y > 3 the spreading dynamics is better described byas well (see Fid12).
an initial exponential growth (Fidl 1a), in agreement WHY With relevance to the spreading of computer virus and

and previous mathematical approaches [15) 20, 22]. In conworms among email users, there is empirical evidence indi-
trast, wher2 < v < 3 the spreading dynamics is better de- cating that Email networks are characterized by a power law
scribed by[1l) (Figlb), and the expondhtesulting from  degree distribution witl2 < v < 3 [13,114]. The transmis-
the fit to the numerical data scales linearly with the averagesion rates of computer viruses are, however, of the order of
distance between nodes (see inset of Hig. 1b). In a more reaheir typical detection times, making difficult the empaic
istic scenario, we use the SI model to simulate the spreading observation of the initial epidemic growth. With relevarice
a routing table error on the Autonomous System (AS) networlsexually transmitted diseases, there are several repalits i
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