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Can one predict DNA Transcription Start Sites by studying bubbles?
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It has been speculated that bubble formation of several base-pairs due to thermal fluctuations
is indicatory for biological active sites. Recent evidence, based on experiments and molecular dy-
namics (MD) simulations using the Peyrard-Bishop-Dauxois model, seems to point in this direction.
However, sufficiently large bubbles appear only seldom which makes an accurate calculation difficult
even for minimal models. In this letter, we introduce a new method that is orders of magnitude
faster than MD. Using this method we show that the present evidence is unsubstantiated.

PACS numbers: 87.15.Aa,87.15.He,05.10.-a

Double stranded DNA (dsDNA) is not a static entity.
In solution, the bonds between bases on opposite strands
can break even at room temperature. This can happen
for entire regions of the dsDNA chain, which then form
bubbles of several base-pairs (bp). These phenomena are
important for biological processes such as replication and
transcription. The local opening of the DNA double he-
lix at the transcription start site (TSS) is a crucial step
for the transcription of the genetic code. This opening is
driven by proteins but the intrinsic fluctuations of DNA
itself probably play an important role. The statistical
and dynamical properties of these denaturation bubbles
and their relation to biological functions have therefore
been subject of many experimental and theoretical stud-
ies. It is known that the denaturation process of finite
DNA chains is not simply determined by the fraction
of strong (GC) or weak (AT) base-pairs. The sequence
specific order is important. Special sequences can have
a high opening rate despite a high fraction of GC base
pairs [1]. For supercoiled DNA, it has been suggested
that these sequences are related to places known to be
important for initiating and regulating transcription [2].
For dsDNA, Choi et al found evidence that the formation
of bubbles is directly related the transcription sites [3].
In particular, their results indicated that the TSS could
be predicted on basis of the formation probabilities for
bubbles of ten or more base-pairs in absence of proteins.
Hence, the secret of the TSS is not in the protein that
reads the code, but really a characteristics of DNA as ex-
pressed by the statement: DNA directs its own transcrip-

tion [3]. In that work, S1 nuclease cleavage experiments
were compared with molecular dynamics (MD) simula-
tions on the Peyrard-Bishop-Dauxois (PBD) model [4, 5]
of DNA. The method used is not without limitations.
The S1 nuclease cleavage is related to opening, but many
other complicated factors are involved. Moreover, theo-
retical and computational studies have to rely on simpli-
fied models and considerable computational power. As
the formation of large bubbles occurs only seldom in a
microscopic system, MD or Monte Carlo (MC) methods

suffer from demanding computational efforts to obtain
sufficient accuracy. Nevertheless, the probability profile
found for bubbles of ten and higher showed a striking
correlation with the experimental results yielding pro-
nounced peaks at the TSS [3]. Still, the large statisti-
cal uncertainties make this correlation questionable. To
make the assessment absolute, we would either need ex-
tensively long or exceedingly many simulation runs or a
different method that is significantly faster than MD.
In this letter, we introduce such a method for the cal-

culation of bubble statistics for first neighbor interac-
tion models like the PBD. We applied it to the sequences
studied in Refs. [3] and, to validate the method and to
compare its efficiency, we repeated the MD simulations
with 100 times longer runs. The new method shows re-
sults consistent with MD but with a lot higher accuracy
than these considerably longer simulations. Armed with
this novel method, we make a full analysis of preferential
opening sites for bubbles of any length. This analysis
shows that there is no strict analogy between these pref-
erential sites and the TSS using equilibrium statistics.
Hence, the previously found correlation must have been
either accidental or due to some non-equilibrium effect,
which remains speculative. We discuss this issue and,
more generally, the required theoretical and experimen-
tal advancements that could address the title’s question
definitely.
The PBD model reduces the myriad degrees of freedom

of DNA to an one-dimensional chain of effective atom
compounds describing the relative base-pair separations
yi from the ground state positions. The total potential
energy U for an N base-pair DNA chain is then given by
U(yN) = V1(y1) +

∑N
i=2 Vi(yi) +W (yi, yi−1) with yN ≡

{yi} the set of relative base pair positions and

Vi(yi) = Di

(

e−aiyi − 1
)2

(1)

W (yi, yi−1) =
1

2
K
(

1 + ρe−α(yi+yi−1)
)

(yi − yi−1)
2

The first term Vi is the on site Morse potential describing
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the hydrogen bond interaction between bases on oppo-
site strands. Di and ai determine the depth and width
of the Morse potential and are different for the AT and
GC base-pair. The stacking potential W consists of a
harmonic and a nonlinear term. The second term was
later introduced [5] and mimics the effect of decreasing
overlap between π electrons when one of two neighbor-
ing base move out of stack. As a result, the effective
coupling constant of the stacking interaction drops from
K ′ = K(1 + ρ) down to K ′ = K. It is due to this term
that the observed sharp phase transition in denaturation
experiments can be reproduced. All interactions with
the solvent and the ions are effectively included in the
force-field. The constants K, ρ, α,DAT, DGC, aAT, aGC

were parameterized in Ref. [6] and tested on denatura-
tion curves of short heterogeneous DNA segments. These
examples show that, despite its simplified character, the
model is able to give a quantitative description of DNA.
Most importantly, it allows to study the statistical and
dynamical behavior of very long heterogeneous DNA se-
quences, which is impossible for any atomistic model.

Despite these successes, it is important to realize the
limitations of the model. The PBD model treats the
A and T bases and the G and C bases as identical ob-
jects. The stacking interaction is also independent of the
nature of the bases. Moreover, there is a subtle point
that needs further explanation. As the PBD model ba-
sically represents a single dsDNA in an infinite solution,
the probability for complete denaturation of a molecule
of finite length, resulting in two single stranded DNAs,
tends to unity with increasing time at any temperature.
In the experiments, where the amount of solvated DNA
is not infinitely diluted, this effect is counterbalanced by
the recombination mechanism where two single stranded
chains in solution come together and match their comple-
mentary bases. Hence, in our calculations we will restrict
the configurational space to the dsDNA only, first of all
because it is a very good approximation in comparison to
experiments which are not performed in the immediate
vicinity of the denaturation transition and, secondly, be-
cause it is a necessary condition to give a relevant mean-
ing to the ensemble averages calculated within the PBD
model.

In microscopic terms, a configuration yN is called a
dsDNA molecule when yi < y0 for at least one i ∈
[1 : N ] with y0 the opening threshold definition. Sim-
ilarly, a configuration is completely denaturated when-
ever yi > y0 for all i. The statistical average

〈

A(yN )
〉

is equivalent to the ratio of two N -dimensional inte-
grals 〈A〉 =

∫

dyNA(yN )̺(yN )/
∫

dyN̺(yN ) with dyN ≡
dyNdyN−1 . . . dy1 and ̺ the probability distribution den-
sity. Numerical integration calculates these integrals ex-
plicitly, while MD and MC calculates only the ratio. Usu-
ally, the dimensionality of the system prohibits direct
numerical integration making MD and MC far favorable.
However, an increase of the computational efforts by a

factor of two reduces the error by only a factor of
√
2 in

MD and MC, while the reduction can be quite dramatic
in low dimensional systems using numerical integration.
In the following, we show how to exploit this by cre-
ating an effective reduction of the dimensions yielding
an orders-of-magnitude faster algorithm for the bubble
statistics calculation. To explain the algorithm, we need
to define a set of functions

θi(yi) = θ(yi − y0), θ̄i(yi) = θ(y0 − yi) (2)

where θ(·) equals the Heaviside step function. θi equals
1 if the base-pair is open and is zero otherwise. θ̄i is the
reverse. These functions indicate whether a base-pair is
open or closed. Using these, we define

θ
[m]
i ≡ θ̄i−m

2
θ̄i+m

2 +1

i+m

2
∏

j=i−m

2 +1

θj for m even

≡ θ̄i−m+1
2

θ̄i+m+1
2

i+m−1
2

∏

j=i−m−1
2

θj for m odd (3)

which are 1 (0 otherwise) if and only if i is at the center of
a bubble that has exactly sizem. To shorten the notation
we have dropped the yi dependencies. For even numbers
it is a bit arbitrary where to place the center, but we
defined it as the base directly to the left of the midpoint
of the bubble. In order to have these quantities defined
also near the ends of the chain, we use θ̄i = 1 for i = 0 and
i = N+1. The properties of interest are the probabilities
for bubbles of sizem centered at base-pair i provided that
the molecule is in the double stranded configuration.

〈

θ
[m]
i

〉

µ
≡

〈

θ
[m]
i µ

〉

〈µ〉 with µ = 1−
N
∏

i=1

θi

≡
Z
θ
[m]
i

Z − ZΠ
(4)

Here µ = 1 except when all bases are open; then µ = 0.
The partition function integrals are given by:

Z =

∫

dyNe−βU(yN ), Z
θ
[m]
i

=

∫

dyNe−βU(yN )θ
[m]
i

ZΠ =

∫

dyNe−βU(yN ) ×
∏

j

θj. (5)

Note that both Z as ZΠ are infinite, but their differ-
ence is well defined. Now, we can make use of the
fact that all integrals ZX are of the factorizable form

ZX =
∫

dyNa
(N)
X (yN , yN−1) . . . a

(3)
X (y3, y2)a

(2)
X (y2, y1) us-



3

ing following iterative scheme

z
(2)
X (y2) =

∫

dy1 aX(y2, y1)

z
(3)
X (y3) =

∫

dy2 aX(y3, y2)z
(2)
X (y2)

. . .

z
(N)
X (yN ) =

∫

dyN−1 aX(yN , yN−1)z
(N−1)
X (yN−1)

ZX =

∫

dyN z
(N)
X (yN ). (6)

The calculation of z
(i)
X (yi) for a discrete set of ngrid val-
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FIG. 1: (color). The probability of bubble opening as function
of bubble size and position for the AAVP5 promoter and the
mutant sequence at 300 K. Probabilities in each row are nor-

malized by a different factor φ(m) = MAX[
〈

θ
[m]
i

〉

µ
] for i ∈

[1, N ] given in the lower panel. The 69 bp sequences start at
index -46 and end at +23. The TSS is at +1, the mutation is
at (+1,+2) were (A,T) bases are replaced by (G,C). Contrary
to [3], the mutation effect is very local.

ues yi requires only n2
grid function evaluations whenever

z
(i−1)
X is known. Hence, a total of N ·n2

grid function eval-

uations are required instead of nN
grid which is a huge im-

provement. Further increase can be obtained by intro-
ducing proper cut-offs for the numerical integration. We
use integration boundaries such that for all i: L < yi < R
and |yi − yi−1| < d, which we control by a single input

parameter ǫ: d =
√

2| ln ǫ|
βK , L = − 1

aAT ln
[
√

| ln ǫ|
βDAT

+ 1
]

,

and R = y0+
√
Nd. Any configuration outside this range

but with at least one base-pair closed will have a proba-
bility density smaller than ǫ/(Z−ZΠ). A strong decrease

in the parameter ǫ will only marginally increase the in-
tegration boundaries. We took ǫ = 10−40 that is much
smaller than necessary for our accuracy. After storing

the following function values in matrices M
(AT/GC)
ij ≡

exp(−β[VAT/GC(L+ i∆y)+W (L+ i∆y, L+(i+ j)∆y)])
with 0 ≤ i ≤ INT[(R − L)/∆y] and −INT[d/∆y] ≤
j ≤ INT[d/∆y] we can reduce the integral operations
for Eq. (6) (using Simpson’s rule) into inexpensive mul-
tiplication and addition operations only.
As a first investigation, we applied this new method

on the adeno-associated viral P5 promoter and the mu-
tant from Refs. [3] using y0 = 1.5 as opening thresh-
old which corresponds to 2.1 Å in real units. To make
the comparison with MD which uses periodic boundary
conditions (PBC), we replicated the chain at both ends,
but only computed the statistics for the middle chain.
This approach, is cheaper than true PBC which scales

as N · (ngrid)
3. The full probability matrix

〈

θ
[m]
i

〉

µ
was

calculated for the middle sequence up to bubbles of size
m = 50. A fraction of this matrix is presented in Fig. 1
in a color plot. In agreement with Ref. [3] we find pref-
erential opening probabilities at the TSS site at +1 that
vanishes after the mutation. But contrary to the results
of Ref. [3], we find that the TSS is not at all the most
dominant opening site. Stronger opening sensitivity is
found at the -30 region. Moreover at variance with the
previous established findings, Fig. 1 shows that the muta-
tion effect is very local. In Fig. 2 we make a projection by

 

 5.0 10-5
 

 1.5 10-4
 

 8.0 10-4
 

 2.8 10-3
 

y0=1.0 loose ends
y0=1.0 ’PBC’

y0=1.5 loose ends
y0=1.5 ’PBC’

 

 5.0 10-5
 

 1.5 10-4
 

 8.0 10-4
 

 2.8 10-3
 

-40 -30 -20 -10  +1  +11  +21

y0=1.0 loose ends
y0=1.0 ’PBC’

y0=1.5 loose ends
y0=1.5 ’PBC’

AAVP5

MUTANT

FIG. 2: (color). The probabilities for bubbles larger than
10 bp for the AAVP5 promoter and the mutant at 300 K.
Both semi-PBC (three-fold replicated system) and loose ends
(single chain) are compared and two values for the opening
threshold y0 = 1.0 and y0 = 1.5. MD results (black) for
y0 = 1.5 with PBC are also given with corresponding error-
bars. A change of scale in the y axis is applied to include
the higher openings at the free boundaries. All results agree
but are different from the less accurate results of [3]. The
mutation and the free boundaries only have a local impact on
the bubble statistics.

looking at the probability Pi ≡
∑N−1

m=10

〈

θ
[m]
i

〉

µ
that at

site i one can find a bubble of size 10 or larger. We com-
pared different boundary conditions and two values for
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y0. In addition, we made the comparison with MD [9]
by performing 100 simulations of 100 ns with different
friction constants γ in the Langevin MD and 10 simu-
lations of 1 µs using Nosé-Hoover. The curves matched
within the statistical errors and agreed with the integra-
tion method (see for instance Fig. 2 where the Langevin
γ = 10 results are plotted together with the results of the
integration method).

We obtained relative errors around 10 % for Nosé-
Hoover and Langevin with γ = 10 and 5 ps−1. The
errors of the γ = 0.05 ps−1, used in Ref. [3], were con-
siderably larger due a stronger correlation between suc-
cessive timesteps. The results of [3] were based on 100
times fewer statistics. Hence, the corresponding errors in
[3] must have been 10 times larger which can explain the
variance with our results. Another explanation could be
that the results of [3] are due to some out-of-equilibrium
or dynamical effects. Such effects depend strongly on the
choice of initial conditions, which poses the problem of
defining biologically significant initial conditions and de-
termining, in a meaningful way, the relevant time scale
along which the simulations have to be carried to detect
such non-equilibrium phenomena.

The principal error in the new method is mainly due
to the finite integration steps. To estimate the accuracy,
we compared ∆y = 0.1 and 0.05 with the almost exact
results of ∆y = 0.025. Using the TSS peak of the AAVP5
sequence with free boundaries as reference, we found that
the systematic error drops from ∼ 5 % to 0.03 % for CPU
times of 40 minutes and 3 hours only. For comparison,
the last accuracy would take about 200 years with MD
on the same machine. The evaluation of larger bubbles
becomes increasingly more difficult for MD. Bubbles of
size 20 showed statistical errors> 100 % while these were
only slightly increased for the integration method. It is
interesting to note that the 10 bp size is more or less the
upper limit for which one get sufficient accuracy using
MD, while it is a lower limit were its relation to bio-
physics becomes interesting [7] stressing the importance
of our method. Finally, we calculated the Pi probabilities
for the adenovirus major late promoter (AdMLP) and a
control non promoter sequence (Fig. 3). Also here, our
results violate the TSS conjecture. The TSS shows some
opening, but cannot be assigned on basis of bubble pro-
file only. Surprisingly, even the control sequence shows
significant opening probabilities.

To conclude, we have shown that MD (or MC) encoun-
ters difficulties to give a precise indication of preferential
opening sites. In particular, information of large bub-
bles is not easily accessible using standard methods. The
method presented here is orders of magnitude faster than
MD without imposing additional approximations. Using
this method, we showed that the TSS is generally not the
most dominant opening site for bubble formation. These
results contradict foregoing conjectures based on less ac-
curate simulation techniques. However, to address the
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FIG. 3: (color). Same as Fig. 2 for the 86 bp AdMLP and the
63 bp non-promoter control sequences. The biological non-
active control sequence shows considerable opening probabil-
ity, even more than the biological active AdMLP promoter.

title’s question, definitely, there are still many issues to
be solved. Still, there is some chance that bubble dynam-
ics rather than bubble statics is indicatory for the TSS.
Speculatively, the previously found correlation could be
justified using this argument. However, a statistical sig-
nificant foundation for this is lacking and it is highly
questionable whether the PBD model and this type of
Langevin dynamics can give a sufficiently accurate de-
scription for the dynamics of DNA. The PBD model
could and, probably, should be improved to give a correct
representation of the subtile sequence specific properties
of DNA. Base specific stacking interaction seems to give
better agreement with some direct experimental obser-
vations [8]. Also, the development of new experimental
techniques is highly desirable. Our method is not lim-
ited to the PBD model or to bubble statistics only, but
it works whenever the proper factorization (6) can be
applied. Therefore, we believe that the technique pre-
sented here will remain of importance for the future in-
vestigations of bubbles in DNA and their biological con-
sequences.
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