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Effect of electron-phonon scattering on shot noise in nanoscale junctions
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We investigate the effect of electron-phonon inelastic scattering on shot noise in nanoscale junc-
tions in the regime of quasi-ballistic transport. We predict that when the local temperature of the
junction is larger than its lowest vibrational mode energy eVc, the inelastic contribution to shot
noise (conductance) increases (decreases) with bias as V (

√
V ). The corresponding Fano factor thus

increases as
√
V . We also show that the inelastic contribution to the Fano factor saturates with

increasing thermal current exchanged between the junction and the bulk electrodes to a value which,
for V >> Vc, is independent of bias. A measurement of shot noise may thus provide information
about the local temperature and heat dissipation in nanoscale conductors.

It is an established fact that for systems with dimen-
sions much longer than the inelastic mean free path λph

(e.g. a macroscopic sample) steady-state zero temper-
ature current fluctuations (shot noise) are suppressed
by electron-phonon scattering [1, 2, 3]. Similarly, for
metallic diffusive wires with length much smaller than
λph (and smaller than the electron-electron scattering
length), the Fano factor (i.e. the ratio between shot
noise and its Poisson value, 2eI, where e is the elec-
tron charge and I is the current of the system) equals
1/3 and is not affected by inelastic processes [4]. Sys-
tems of nanoscale dimensions may not fall in either
one of the above cases. In this instance each elec-
tron, on average, releases only a small fraction of its
energy to the underlying atomic structure during the
time it spends in the junction, making transport quasi-
ballistic [5, 6, 7, 8, 9, 10, 11]. However, the current
density and, consequently, the power per atom are much
larger in the junction compared to the bulk. This leads
to heating and inelastic features in the differential con-
duction which are indeed observed in experiments with
metallic quantum point contacts [12, 13, 14, 15] and
molecular structures [8, 10, 16, 17, 18] as a direct con-
sequence of the interplay between electron and phonon
statistics [19]. For these systems it is therefore not ob-
vious what is the effect of inelastic scattering on shot
noise.

In this Letter we show analytically that shot noise in
quasi-ballistic nanoscale junctions is enhanced by inelas-
tic scattering whenever electrons have enough energy to
excite the phonon modes of the junction. The current
instead decreases. As a consequence, the Fano factor in-
creases. We find it increases with bias as

√
V when the

local temperature of the junction is larger than its lowest
vibrational mode energy eVc. We also show that with in-
creasing thermal current carried away from the junction
to the bulk electrodes, the inelastic contribution to the
Fano factor converges to a minimum value independent
of bias for V >> Vc. A measurement of the Fano fac-
tor may thus provide information about the local tem-
perature and heat dissipation in nanoscale conductors.

Transport in a model atomic gold point contact will be
used to illustrate these findings.

Since the dimensions of the junction are much smaller
than λph (and the observed inelastic features in quasi-
ballistic systems are very small [12, 16, 17]) first-order
perturbation theory in the electron-phonon coupling cap-
tures the dominant contribution to inelastic scattering.
This is the contribution we calculate in this paper.

Let us assume that the junction is connected to two
biased bulk electrodes. The electronic states of the full
system are thus described by the field operator Ψ̂ =
∑

E,α=L,R aαEΨ
α
E

(

r,K‖

)

, constructed from the single-

particle wave functions Ψ
L(R)
E

(

r,K‖

)

and annihilation

operators a
L(R)
E corresponding to electrons propagating

from the left (right) electrode at energy E. K‖ is the
transverse component of the momentum [21]. We also as-
sume that the electrons rapidly thermalize into the bulk
electrodes so that their statistics are given by the equi-

librium Fermi-Dirac distribution, f
L(R)
E = 1/(exp[(E −

EFL(R))/kBTe] + 1) in the left (right) electrodes with
local chemical potential EFL(R), where Te is the elec-
tronic temperature. In the following we will assume that
Te = 0 K [20], and the left electrode is positively bi-
ased so that EFL < EFR. The stationary scattering

states Ψ
L(R)
E

(

r,K‖

)

are eigenstates of an effective single-
particle Hamiltonian He which may be computed, e.g.,
using a scattering approach within the static density-
functional theory of many-electron systems [21]. The
combined dynamics of electrons and phonons is described
by the Hamiltonian (atomic units will be used through-
out this paper) [8]

H = He +Hph +He−ph, (1)

where Hph = 1
2

∑

i,µ∈vib

q̇2iµ + 1
2

∑

i,µ∈vib

ω2
iµq

2
iµ is the phonon

contribution, with qiµ the normal coordinate and ωiµ the
normal frequency of the vibration labeled by the µ-th
component of the i-th ion. He−ph describes the electron-
phonon interaction and has the following form [8]
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FIG. 1: Feynman diagrams and corresponding amplitudes
(see text) of the main electron-phonon scattering mechanisms
contributing to the correction of the current and noise.

He−ph =
∑

α,β

∑

E1,E2

∑

iµ,jν∈vib
√

1

2ωjν

Aiµ,jνJ
iµ,αβ
E1,E2

aα†E1
aβE2

(

bjν + b†jν

)

, (2)

where α = L,R and bjν is the phonon annihilation oper-
ator. {Aiµ,jν} is the transformation matrix that relates

Cartesian coordinates to normal coordinates, and J iµ,αβ
E1,E2

is the electron-phonon coupling constant which can be
directly calculated from the scattering wave-functions

J iµ,αβ
E1,E2

=

∫

dr

∫

dK‖Ψ
α∗
E1

(

r,K‖

)

∂µV
ps (r,Ri)Ψ

β
E2

(

r,K‖

)

,

(3)
where we have chosen to describe the electron-ion in-
teraction with pseudopotentials V ps (r,Ri) for each i-th
ion [21].
We use as unperturbed states of the full sys-

tem (electron plus phonon) the states |ΨL(R)
E ;njν〉 =

|ΨL(R)
E

(

r,K‖

)

〉⊗|njν〉, where njν is the occupation num-
ber of the jν-th normal mode. The first-order perturba-
tion to the wave functions is thus

|ΦL(R)
E ;njν〉 = |ΨL(R)

E ;njν〉+ |δΨL(R)
E ;njν〉, (4)

where the first-order correction term is

|δΨα
E;njν〉 = lim

ǫ→0+

∑

α′=L,R

∑

j′ν′

∫

dE
′

Dα′

E
′

〈Ψα′

E′ ;nj′ν′ |Hel−vib|Ψα
E;njν〉|Ψα′

E′ ;nj′ν′〉
ε(E, njν)− ε(E′, nj′ν′)− iǫ

, (5)

with D
R(L)
E the partial density of states of left (right)

moving electrons, and ε(E, njν) = E + (njν + 1/2)ωjν

the energy of state |Ψα
E ;njν〉. Carrying out explicitly the

integrals in Eq. (5), the nonvanishing corrections to the
wave function can be written as

FIG. 2: Top panel: ratio of the total conductance G of an
atomic gold point contact and its value in the absence of
inelastic effects G0 as a function of bias for different val-
ues of thermal current coefficient (see text): Ath = 10−19

(dot), 10−17 (dot-dashed), 10−15 (dashed), and ∞ (solid)
dyn/(sK4). Bottom panel: corresponding Fano factor ratio.

|δΨα
E;njν〉 = (Bα

jν,1 +Bα
jν,3)|Ψα

E+ωjν
;njν + 1〉

+(Bα
jν,2 +Bα

jν,4)|Ψα
E−ωjν

;njν − 1〉, (6)

where Bα
jν,1, B

α
jν,2, B

α
jν,3 and Bα

jν,4 correspond to the dia-

grams depicted in Fig. 1. For
∣

∣δΨR
E ;njν

〉

, the coefficients
are given by:

BR
jν,1(2) = iπ

∑

iµ

√

1

2ωjν

Aiµ,jνJ
iµ,LR
E±ωjν ,E

DL
E±ωjν

·
√

(δ + 〈njν〉)fR
E (1− fL

E±ωjν
), (7)

and

BR
jν,3(4) = −iπ

∑

iµ

√

1

2ωjν

Aiµ,jνJ
iµ,RL
E±ωjν ,E

DL
E±ωjν

·
√

(δ + 〈njν〉)fL
E (1− fR

E±ωjν
), (8)

where δ = 1 and ”−” sign are for the scattering dia-
grams (a) and (c); δ = 0 and ”+” sign for diagrams
(b) and (d). The average number of phonons is given
by 〈njν〉 = 1/ [exp (ωjν/kBTw)− 1] where Tw is the lo-
cal temperature of the junction [8, 10]. Similarly, the
coefficients in

∣

∣δΨL
E ;njν

〉

have the forms

BL
jν,k = BR

jν,k(L ⇌ R), (9)

where k = 1, · · · , 4 ; the notation (L ⇌ R) means inter-
change of labels R and L.
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At Te = 0 K the first-order correction to the current is
thus:

I = −i

∫ EFR

EFL

dE

∫

dR

∫

dK‖Ĩ
RR
E,E ·



1−
∑

jν

(
∣

∣BR
jν,1

∣

∣

2
+
∣

∣BR
jν,2

∣

∣

2
)



 , (10)

with ĨαβE,E ≡ (Ψα
E)

∗∂z(Ψ
β
E) − ∂z(Ψ

α
E)

∗(Ψβ
E). Equation

(10) has been simplified by using (i) ĨRR
E±ωjν ,E±ωjν

≃
ĨRR
E,E , valid for energies close to the chemical potentials;

and (ii) ĨRR
E,E = −ĨLL

E,E , a direct consequence of time-
reversal symmetry. The current is therefore reduced by
inelastic effects.
Let us now calculate the corresponding correction to

shot noise. We have previously shown that shot noise can
be written in terms of single-particle scattering states as
[22, 23]

S =

∫ EFR

EFL

dE

∣

∣

∣

∣

∫

dR

∫

dKĨLR
E,E

∣

∣

∣

∣

2

, (11)

which reduces to the well-known formula S ∝

∑

i Ti(1−
Ti) when the eigenchannels transmission probabilities Ti

are extracted from the single-particle states with inde-
pendent transverse momenta [1, 22, 23]. Replacing (4)
into (11) we get

S =

∫ EFR

EFL

dE

∣

∣

∣

∣

∫

dR

∫

dKĨLR
E,E

∣

∣

∣

∣

2

· [1 +
∑

jν;k=1,2

(

∣

∣BR
jν,k ·BL∗

jν,k

∣

∣

2
)

]. (12)

Since the summation over vibrational modes contains
only positive terms, shot noise is enhanced by electron-
phonon inelastic effects in the quasi-ballistic regime.
Therefore, the Fano factor F normalized to the corre-
sponding value in the absence of electron-phonon inter-
actions (F 0) is

F/F 0 =

∫ EFR

EFL
dE

[

1 +
∑

jν,k=1,2

(

∣

∣

∣
BR

jν,k ·BL∗
jν,k

∣

∣

∣

2
)]

∫ EFR

EFL
dE

[

1−∑

jν,k=1,2

∣

∣

∣
BR

jν,k

∣

∣

∣

2
] ,

(13)
which increases with electron-phonon scattering.
Note that due to the orthogonality of phonon states,

the absolute value of the correction to shot noise is
smaller than that to the current (cf. Eq. (10) and
Eq. (12)). Note also that conservation of energy and the
Pauli exclusion principle play an important role. The for-
mer dictates an onset bias Vc for inelastic contributions;

the latter prohibits the scattering processes depicted in
Fig. 1(c) and (d) at Te = 0 K.
These results are illustrated in Fig. 2 where the inelas-

tic contribution to the conductance and shot noise are
plotted for a gold atom placed in the middle of two bulk
gold electrodes (represented with ideal metals, jellium
model, rs ≈ 3). Details of the calculations of both the
scattering wavefunctions within static density-functional
theory and the vibrational modes for this system can
be found in Refs. [8, 21]. In the absence of electron-
phonon interactions, the unperturbed differential con-
ductance G0 is about 1.1 (in units of 2e2/h) and the
Fano factor is F 0 ≃ 0.14 [22] in the bias range of Fig. 2.
Inelastic effects cause a discontinuity in the conductance,
and a variation of the Fano factor ratio (Eqs. (13)), at a
bias Vc ≈ 11 mV, corresponding to the energy of the
lowest longitudinal mode of the system. In addition,
the above inelastic corrections depend on the local tem-
perature of the junction Tw (see Eqs. (7) through (9))
which, in turn, is the result of the competition between
the rate of heat generated locally in the nanostructure
and the thermal current Ith carried away into the bulk
electrodes [5, 6, 7, 8, 10, 11]. The latter has a tempera-
ture dependence of Ith = AthT

4 [24], where the constant
Ath depends on the details of the coupling between the
local modes of the junction and the modes of the bulk
electrodes. At steady state this thermal current has to
balance the power generated in the nanostructure, which

is a small fraction of the total power of the circuit V 2

R
(V

is the bias, R is the resistance) [5, 8].
The larger Ath, the larger the heat dissipated into the

bulk and, thus, the lower the local temperature Tw [25].
In the limit of infinite Ath, i.e. Tw = 0, at any given bias
larger than Vc, electrons can only emit phonons [〈njν〉 =
0 in Eqs. (7) and (8)]. The inelastic contribution to the
conductance and Fano factor, therefore, saturate to a
specific value (see Fig. 2). We can derive both the bias
dependence and this saturation value, to first order in
the bias, as follows.
By equating the thermal current Ith to the power gen-

erated in the junction, it is easy to show that Tw =
α
√
V [7, 26], where the constant α depends on the de-

tails of the thermal contacts between the junction and
electrodes. Let us assume for simplicity a single phonon
mode of frequency ω. For Tw > ω/kB, we expand
〈njν〉 ≈ kBTw/ω in Eqs. (7) and (8). From Eq. (10)
we then get

G

G0
≃ 1− α

3

2

kB
ω

γIθ(V − Vc)
√
V , (14)

where θ(V − Vc) is the Heaviside function; γI =
∣

∣(dI/dV ) /
(

dI0/dV
)∣

∣ is the relative change in conduc-
tance due to inelastic effects at Vc (its value is about 1%
for the specific case, in agreement with experiments on
similar systems [8, 12]). The inelastic contribution to
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the conductance thus decreases with bias as
√
V . This

square-root dependence is clear in Fig. 2 for Ath < 10−15

dyn/(sK4) which corresponds to temperatures for which
the condition Tw > ω/kB is satisfied [27].
The same analysis applied to shot noise leads to

S

S0
≃ 1 + α2

(

kB
ω

)2

γsθ(V − Vc)(V − Vc), (15)

where γS =
∣

∣(dS/dV ) /
(

dS0/dV
)
∣

∣ is the relative change
of shot noise due to inelastic effects at V = Vc (it is about
0.04 % for the specific gold quantum point contact). The
inelastic correction to shot noise thus increases linearly
with bias for Tw > ω/kB. Consequently, F/F

0 ∝
√
V as

it is also evident from Fig. 2.
In the opposite limit of perfect heat dissipation in the

bulk electrodes, i.e. for Tw → 0 [see Fig. 2, Ath → ∞
dyn/(sK4)], then from Eqs. (7) and (8) it is easy to prove
that I/I0 = 1 − θ(V − Vc)γI(V − Vc)/V and S/S0 =
1 + γS [(V − Vc)/V ] θ(V − Vc). Therefore,

F/F 0 =
1 + γS

V−Vc

V
θ(V − Vc)

1− γI
V−Vc

V
θ(V − Vc)

, (16)

which tends to the constant value F/F 0 → (1+γS)/(1−
γI) as V >> Vc.
We have thus shown that the Fano factor depends sen-

sitively on the efficiency of heat dissipation in nanoscale
junctions. It therefore provides a tool to probe local tem-
peratures and heat transport mechanisms in these sys-
tems. The predictions reported here should be readily
tested experimentally.
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