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Abstract

We report first principles analysis of electron-phonon coupling in molecular devices under ex-

ternal bias voltage and during current flow. Our theory and computational framework are based

carrying out density functional theory within the Keldysh nonequilibrium Green’s function formal-

ism. We analyze which molecular vibrational modes are most relevant to charge transport under

nonequilibrium conditions. For a molecular tunnel junction of a 1,4-benzenedithiolate molecule

contacted by two leads, the low-lying modes of the vibration are found to be most important. As

a function of bias voltage, the electron-phonon coupling strength can change drastically while the

vibrational spectrum changes at a few percent level.

PACS numbers: 81.07.Nb, 68.37.Ef, 72.10.-d, 73.63.-b
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One of the most important questions concerning charge transport in molecular electronic

devices is the role of electron-phonon (e-p) interaction. Here, “phonon” refers to quantized

molecular vibrational modes which couple to various scattering states of the device. A

typical molecular device has the Metal-Molecule-Metal (MMM) configuration schematically

shown in Fig. 1, where metal leads extend to far away and bias voltages can be applied so

that a current flows through. The problem of predicting vibrational spectra and e-p coupling

strength for such an open system during current flow, within self-consistent first principles

including all atomic details of the molecule as well as the leads, is a serious theoretical

challenge that has not been satisfactorily addressed. A particularly important problem is to

understand which vibrational mode couples to which scattering state at what bias voltage

[1, 2]. It is the purpose of this article to address this issue.

Experimentally, single molecule vibrational spectra can be measured by inelastic tun-

neling spectroscopy (IETS) [3, 4, 5]. Theoretically, various models have been applied to

understand IETS and to investigate effects of e-p interaction based on tight binding atom-

istic Hamiltonians [6, 7, 8]. Recently, Frederiksen et al. [9] reported a first principles analysis

of inelastic current due to e-p interactions in an Au chain, in which the relevant vibrations

are along the chain length. In their theory [9], the vibrational spectra was obtained using a

plane-wave basis density functional theory (DFT) code in a cluster configuration at equilib-

rium, and the dynamic matrix was evaluated using a finite differencing scheme. Transport

properties were then obtained using the Transiesta package [10] with LCAO basis, and e-p

scattering was included at the level of self-consistent Born approximation.

In order to investigate voltage dependence of the e-p interaction in MMM devices, how-

ever, quantized molecular vibrations and electrons need to be treated on equal footing at

nonequilibrium. We accomplish this by carrying out DFT atomic analysis within the Keldysh

nonequilibrium Green’s function (NEGF) formalism [11]. In addition, we calculate the dy-

namic matrix within the NEGF-DFT formalism [11] by evaluating analytical formula rather

than numerical finite differencing [9]: this is more general and more accurate so that all the

phonon modes and e-p couplings can be obtained for complicated systems. For a molec-

ular tunnel junction of a 1,4-benzenedithiolate (BDT) molecule contacted by two metallic

electrodes (see Fig. 1), we found that the low-lying modes of the vibration are the most

important for e-p coupling. As a function of bias voltage, the coupling strength can change

drastically while the vibrational spectrum changes at a few percent level.
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FIG. 1: Schematic plot of a Metal-BDT-Metal molecular tunneling junction (BDT = C6H4 S2).

The electrodes consist of repeated unit cells extending to z = ±∞. The scattering region contains

several layers of electrodes and the molecule. The vibrational box lies inside the scattering region.

We start from the NEGF-DFT formalism documented in Ref. 11, in which the density

matrix ρ̂ is calculated by NEGF G<, ρ̂ ∼
∫

dE G<(E). This way, we naturally take into

account external bias voltage and open device transport boundary condition. After the

Kohn-Sham Hamiltonian ĤKS[ ρ̂ ] of the device is obtained self-consistently, the total energy

of the scattering region (see Fig. 1), as well as all transport properties of the device, can be

obtained [11]. Importantly, the NEGF-DFT formalism allows one to obtain ĤKS and total

energy E({Ri}, Vb) as functions of external bias Vb, (Ri is the position of the i-th atom).

The phonon (vibrational) eigenvectors eν and frequencies ων (ν is the mode index) are

obtained by diagonalizing the dynamic matrix (Hessian matrix),

Hj,j′ = ∇Rj
∇Rj′

E({Ri}, Vb)/
√

MjMj′, (1)

where M is the mass of an atom. Once (eν , ων) are obtained, the e-p interaction strength

gν, defined by the e-p Hamiltonian [12], can be obtained from the standard expression:

gνj,µ; j′,µ′ =
∑

i

√

~

2Miων

e(ν, i)〈φj,µ| ∇Ri
ĤKS

∣

∣φj′,µ′〉. (2)

Here,
∣

∣φj,µ

〉

is a basis function for orbital µ (µ = s, p, d) of the j-th atom. The derivative of

the KS Hamiltonian is carried out by fixing the atomic positions at their stationary locations

R0
i . (R

0
i is where the i-th atom feels no force [13].) Although the Hessian matrix Hj,j′ and

the e-p coupling matrix gνj,µ; j′,µ′ appear to have the same form as those for equilibrium

system, the derivatives of ĤKS({Ri}, Vb) and E({Ri}, Vb) with respect to Ri propagate to

derivatives of NEGF G<(E) that includes nonequilibrium physics [13].
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The e-p coupling is characterized by a dimensionless parameter [12] λe−p which is con-

tributed by all phonon modes,

λe−p =
∑

ν

λν , λν ≡ DOS(εF)

∣

∣〈 gν〉
∣

∣

2

~ων
. (3)

Here, DOS(E) is the density of states of the scattering region and εF the Fermi energy of the

leads. As we are interested in e-p coupling for quantum transport, the gν matrix is averaged

over scattering states Ψsc, which are obtained by the NEGF-DFT numerical package [11] for

any MMM device:

〈gν(E,E ′)〉 = 〈Ψsc(E)| gν |Ψsc(E
′)〉. (4)

If both scattering states have the same energy E = E ′ = εF, we call such an e-p coupling

the “elastic” one, λel
ν . When E = εF and E ′ = εF ± ~ων , we call it the “inelastic” λ±

ν .

Finally, when the MMM device is under an external bias voltage Vb, we further average λν

over the transport energy window (µL, µR) where µR/L are the electrochemical potentials of

the right/left leads and |µR − µL| = eVb. Hence, at nonequilibrium, we obtain

λel
ν (Vb) =

∫ µ
R

µ
L

dE

eVb

DOS(E)

∣

∣〈 gν(E,E)〉
∣

∣

2

~ων

. (5)

The inelastic coupling λ±

ν (Vb) is calculated by replacing gν(E,E) with gν(E, E ± ~ων) in

Eq. (5).

The above theoretical formalism is implemented into our NEGF-DFT package McDCAL

[11]. In numerical calculations, we further define a “vibrational box” inside the MMM device

(see Fig. 1) which contains the atoms of interest. Typically, the vibrational box include the

molecule and perhaps a few layers of the nearest lead atoms. The atomic indexes in the

above formalism refer to those inside the vibrational box.

In the following, we investigate general features of vibrational spectra and e-p coupling

during nonequilibrium transport using the model MMM device of Fig. 1, i.e., a BDT

molecular wire [14]. For each bias voltage, we iterate the KS Hamiltonian of the device

to numerical convergence using the NEGF-DFT method [11]; the atomic positions in the

scattering region must also be relaxed for each applied bias. Afterward, the vibrational

spectrum and the e-p coupling are obtained. As a check, we calculated ων of an isolated BDT

using our NEGF-DFT formalism and obtained reasonable agreement, to within ≤ 5− 6 %,

with experimental data collected by Raman spectroscopy and other methods [15]. We also
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checked that the diagonal matrix elements of the e-p coupling are non-zero for modes having

the Ag symmetry and are zero for other modes, in agreement with selection rules from group

theory [16].

When the BDT is placed between the leads (see Fig. 1), new properties arise. First,

several low-lying modes that do not exist for isolated BDT are found to play important roles.

These modes include the center-of-mass and libration (CM (i) and LB (i), i = X, Y, Z)

with energy ~ων ≃ 8 − 14 meV. Clearly, the presence of leads breaks the translational

and rotational symmetries and produces these low-lying modes. Second, many vibrational

frequencies are renormalized, to ≃ 10 − 30 %, from that of the isolated molecule. This is

especially true for modes with strong sulphur oscillations in the BDT. For large bias, Vb ≈ 1

V, we found that ων changes up to 2 % while eν changes up to 5 % compared with the

vibrational spectrum at Vb = 0. At Vb = 0, it turns out that all the modes can be classified

by the same D2h point group as in the case of an isolated BDT; at Vb 6= 0, they can be

classified by the C2v point group.

Fig. 2 plots the e-p coupling λν versus ~ων at Vb = 0. For small bias voltages, Vb ≤ 0.5 V,

λν does not change qualitatively. Most clearly shown is that some phonon modes give

distinctly larger e-p coupling to scattering states than others (see Eq. (4)). Beside the

expected in-plane Ag(n) modes, modes of other symmetries are also responsible for the

peaks in λν (see the right insets of Fig. 2 for a few important modes). Notable are the

in-plane modes B1u(n), the center-of-mass mode CM(Z), the out-of-plane modes Au(n),

B1g(1), and the libration LB(Z). Recall that for vibrational spectroscopy on free BDT

such as Raman or infrared, there are always selection rules of modes [15]. For a BDT

device, however, our results suggest that no obvious selection rules are followed because

many modes with very different symmetries manifest. Interestingly, among the low-lying

modes with ων < 1000 cm−1 (~ων < 0.12 eV), the “breathing” modes Ag(1) and Ag(2) are

not the most important ones for coupling to scattering states (λν ≃ 1− 2× 10−4), although

these modes are important for a free BDT. For the BDT device, the total e-p coupling (see

Eq. (3)) is λel
e−p ≈ λ−

e−p ≈ 7× 10−3 at Vb = 0.

To understand why modes with symmetry other than Ag can couple to scattering states,

as shown by some of the peaks in Fig. 2, we consider Eq. (4). For a free BDT, the

electronic wave function in Eq. (4) is a molecular orbital, and for each orbital one obtains

a value 〈gν〉. Hence for a free BDT the relevant e-p coupling is a diagonal matrix in orbital
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FIG. 2: Dimensionless e-p coupling constants λel
ν (circles), λ−

ν (triangles), λ+
ν (diamonds) as a

function of vibrational frequency ων at Vb = 0. The lines are guide to the eye. The modes are

classified using the D2h point group. The left inset shows projection Psc,RMO of a scattering

state at Fermi energy (shifted to zero) onto molecular orbitals (RMO) of the BDT. Letters H and

L mean HOMO and LUMO. In the right side insets, we show eigenvectors of several important

eigenmodes of the BDT at small biases, namely, the libration LB(Z) (top), Ag(4) (middle), and

B1u(4) (bottom).

space: only those vibrational modes with Ag symmetry give nonzero values to these diagonal

matrix elements [16]. For transport, however, the wave function appearing in Eq. (4) is a

scattering state which is roughly a linear combination of many molecular orbitals. Therefore

it is possible to have off-diagonal matrix elements in the coupling matrix so that modes with

symmetries other than Ag can also contribute. This can be substantiated as follows. We

project scattering states Ψsc(E) onto “renormalized molecular orbitals” (RMO) of the BDT

in the MMM device [17]. The RMO’s are obtained by diagonalizing the Hamiltonian sub-

matrix that corresponds to the BDT molecule, and this sub-matrix is a part of the total

KS Hamiltonian of the entire MMM device [17]. Note that RMO’s can be different from

the original molecular orbitals of an isolated BDT due to charge transfer from the leads to

the molecule and external bias potentials. The projection is characterized by the quantity
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FIG. 3: Dimensionless e-p coupling constants λel
ν (circles) and λ−

ν (triangles) at Vb = 1 V. Although

in principle one should use the C2v point group to label the modes, for comparison with Fig. 2 we

keep the D2h labels here. The left insets show projection Psc,RMO for two scattering states taken

at E − εF = 0.4 eV. In the right side insets, we show eigenvectors of several important modes at

Vb ≃ 1 V, namely, CM(Y ) (top), CM(Z) (middle), and Ag(1) (bottom).

Psc,RMO ≡ |〈Ψsc(εF) |RMO〉|2 plotted in the left inset of Fig. 2 as a function of energy.

We found that all scattering states Ψsc near the Fermi energy are contributed by the same

several dominant RMO’s at low bias. Therefore one can well consider that Ψsc is a linear

combination of these few RMO’s and gν of Eq. (4) is contributed mostly by them, i.e., 〈 gν〉

is contributed by a quantity gναα′ ≡ 〈RMOα| g
ν |RMOα′〉. Hence, for transport problems,

the off-diagonal contributions (when α 6= α′) can be as important as the diagonal ones

(α = α′). Furthermore, when bias Vb is increased, molecular orbitals in the MMM device

[17] become less symmetric so that vibrational modes different from the Ag symmetry can

even contribute to the diagonal matrix elements of the e-p coupling. For example, at Vb = 1

V, the contribution of orbitals HOMO− n with n = 1, 3 to the scattering states is found to

give rise to non-zero e-p coupling for vibrational modes with both theAg andB1u symmetries.

These results allow us to conclude that e-p coupling in MMM devices during current flow

(Vb 6= 0) is much more complicated than that for free molecules.
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A most important finding is that at large bias voltage, Vb ≃ 1 V, the e-p coupling

strength changes drastically although the vibrational spectrum is only changed by a few

percent as mentioned above. Fig. 3 plots the coupling strength at Vb = 1 V. We observe

that contributions to e-p coupling are now dominated by a few low-lying modes such as the

center-of-mass modes; the total coupling is a factor of five greater than that at low bias (see

Fig. 2), and coupling due to individual low-lying modes is also much larger. By projecting

different scattering states Ψsc(E) with the same energy E onto RMO’s as presented above,

we found that two patterns of Psc,RMO occur, as shown in the left insets of Fig. 3. This

indicates that scattering states inside the transport energy window are different from those

at low bias. In particular, the pattern of Psc,RMO in the upper panel is similar to that in

Fig. 2, but the new (lower) pattern of Psc,RMO comes from lower HOMO − n and higher

LUMO+n RMO’s. This leads to a different behavior of e-p couplings at large biases for the

BDT device. For example, our calculations reveal that the peak labeled CM(Y ) in λν(ων)

(see Fig. 3) comes from particular off-diagonal matrix elements, 〈L + 2 | gν |H − 1〉 and

〈L + 4 | gν |H − 1〉. The peak labeled CM(Z), on the other hand, is found to come from

diagonal matrix elements, e.g., 〈H − 1 | gν |H − 1〉. These findings also correlate well with

the peaks of Psc,RMO in the left insets of Fig. 3. The total λe−p at Vb ≃ 1 V is found to

be ≃ 0.04. This enhancement by roughly a factor of five from that of Vb ≃ 0 is due to the

center-of-mass modes shown in Fig. 3 that can be confirmed by computing λe−p without

counting these modes.

Why bias voltage can change e-p coupling so drastically? We found that the reason is

mainly due to contribution of different scattering states. In the inset of Fig. 4, we plot

transmission coefficient T (E, Vb) vs. electron energy E for several values of Vb. Most clearly

shown is that Vb shifts the transmission features toward the transport window. In particular,

a sharp peak (at E ≈ −0.3 eV) is shifted up-wards in energy with the increase of Vb. When

Vb > 0.5 V, the “tail” of this sharp peak starts entering the transport window (between

µL = 0 and µR = eVb, see also Eq. (5)). If Vb > 0.75 V, this peak enters into the transport

window completely. When this happens, the e-p coupling changes drastically and the new

pattern appears in the projection Psc,RMO as discussed above. Fig. 4 plots the e-p coupling

strength λν for several vibrational modes ν and the total λe−p vs. Vb. The curves give a

clear indication that the e-p coupling is roughly a constant at small biases, but can change

nonlinearly as the applied bias voltage is varied. Such a change can have deep implications
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FIG. 4: Dimensionless e-p coupling constants λel
e−p (circles) and λel

ν , for ν = CM(Y ) (squares),

CM(Z) (diamonds), and Ag(1) (triangles), as a function of Vb. Inset: transmission function

T (E,Vb) at Vb = 0.5 V (full line), Vb = 0.75 V (dashed line), and Vb = 1 V (dash-dot line). The

transport energy window (µL, µR) lies in the positive part of the energy axis, from E = 0 to

E = |eVb|.

to local heating in the device during nonequilibrium charge transport [6, 9, 18, 19].

In summary, the entire relevant vibrational spectrum of a molecule device can be obtained

at non-zero bias within the NEGF-DFT formalism where both vibrational and electronic

properties are calculated at equal footing. For a 1,4-BDT molecular device studied here, low-

lying vibrational modes play an important role in contributing to the e-p coupling strength.

The coupling strength changes drastically as bias voltage is increased due to participations

of new scattering states. For the BDT device, at large bias of Vb ≃ 1 V, it is the center-

of-mass modes which denominate the e-p coupling, while for small bias Vb < 0.5 V, many

modes of different symmetries contribute. The vibrational spectrum also depends on bias,

but for the BDT device this dependence is at a few percent level.

This work is supported by NSERC of Canada, FQRNT of Québec, and CIAR.
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