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Electric Field Modulation of Galvanomagnetic Properties of Mesoscopic Graphite
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Electric field effect devices based on mesoscopic graphite are fabricated for galvanomagnetic mea-
surements. Strong modulation of magneto-resistance and Hall resistance as a function of gate voltage
is observed as sample thickness approaches the screening length. Electric field dependent Landau
level formation is detected from Shubnikov de Haas oscillations in magneto-resistance. The effective
mass of electron and hole carriers has been measured from the temperature dependant behavior of
these oscillations.

Graphite is a semimetal with highly anisotropic elec-
tronic structure featuring nearly compensated low den-
sity electrons and holes with very small effective mass [1].
Such an unusual electronic structure is the basis of unique
electronic properties of other graphitic materials, such as
fullerenes and carbon nanotubes [2], and may lead to
novel manifestations in two-dimensional graphene mate-
rials. For this reason, electron transport in graphite has
recently been the subject of extensive theoretical [3, 4]
and experimental [5, 6, 7, 8, 9] investigations. In par-
ticular, interesting size dependent galvanomagnetic ef-
fect has been observed [10, 11] in thin layers of graphite,
with thickness approaching ∼ 10 nm. On this mesoscopic
length scale, the electrostatic field-effect (EFE) modula-
tion of the charge carrier concentration is expected to be
very effective, owing to the low density of nearly com-
pensated carriers in graphite. However, the EFE depen-
dent galvanomagnetic measurements in graphite have not
been carried out in previous studies due to the difficulty
in obtaining adequate sample geometries.

In this letter, we present results from the magne-
toresistance (MR) and Hall resistance measurements in
mesoscopic graphite crystallites consisting of as few as
∼ 35 atomic layers. Strong modulation of galvanomag-
netic transport has been observed as the gate electric
field changes. EFE dependent Shubnikov de Hass (SdH)
oscillations, signatures of Landau level formation of elec-
trons and holes, have been observed at low temperatures.
In addition, the effective mass of electrons and holes are
measured by investigating the temperature damping of
SdH amplitudes for each type of carriers.

The mesoscopic graphite devices used in this exper-
iment are fabricated using a unique micro-mechanical
method. The details of the device fabrication are de-
scribed elsewhere [12]. In brief, small graphite crys-
tal blocks are extracted from bulk highly oriented py-
rolytic graphite (HOPG) using micro-patterning followed
by micro-mechanical manipulation. A detached HOPG
block is then transferred and fixed onto a micro-machined
Si cantilever. By operating an atomic force microscope
(AFM) with load on the graphite mounted cantilever,
very thin layers of graphite crystallites with lateral size
∼ 2 µm and thickness d raging from 10 - 100 nm are
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FIG. 1: The inset shows an AFM image of a 12 nm thick
mesoscopic graphite sample with four electrodes at the cor-
ners for galvanomagnetic measurements. The left and right
panel show the Hall resistance (Rxy) and magneto-resistance
(Rxx) respectively as a function of magnetic field measured
at T = 1.7 K in this device. Numbers near each curve indi-
cate the applied gate voltages. In the right panel, curves are
shifted for clarity and the dashed lines correspond to the zero
lines of each curve.

sheared off onto SiO2/Si substrate. Multiple metal elec-
trodes (Cr/Au) are then fabricated on the corners, using
electron beam lithography (for AFM image of a typical
device, see Fig. 1 inset). The degenerately doped silicon
substrate serves as a gate electrode with thermally grown
silicon oxide (500 nm) acting as the gate dielectric.
Fig. 1 displays the Hall resistance (Rxy) and the

MR (Rxx) as a function of applied magnetic field, B,
measured in a 12 nm thick graphite sample at tempera-
ture T = 1.7 K. The excitation current is kept at 0.5
µA for both Rxy and Rxx measurements. The mag-
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FIG. 2: Magneto-resistance measured in 12 nm (solid square)
and 42 nm (open circle) thick sample at various gate volt-
ages. The dashed and dotted lines are fits to a model de-
scribed in text. The lower inset shows a schematic STB di-
agram for electron (εe(k)) and hole (εh(k)) in the presence
of electrostatic potential induced by the gate. Upper inset
represents the local magneto-resistivity across the sample, as-
suming φ0 = 8E0/|e| as an example. Symbols are defined in
text.

netic field is applied perpendicularly to the graphite basal
plane. Both quantities exhibit oscillatory features on top
of smooth backgrounds as B varies. Near Vg ≈ 0 V,
the MR and Hall resistance exhibit similar behaviors to
those observed in high quality bulk graphite [13]. The
“V” shaped MR background is ascribed to the general
nature of magnetotransport in materials with coexisting
nearly compensated electron and hole carriers [14], while
the oscillations on top of the background are related to
the SdH effect, the quantum oscillations due to Landau
level formation [15]. Remarkably, as we vary the gate
voltage, Vg, the behavior of Rxx and Rxy changes dra-
matically. The background in the MR is most prominent
at V max

g ≈ −15 V. As Vg moves away from this value, the
slope of the MR background becomes much smaller. The
change of Hall measurement is even more drastic: Rxy(B)
changes its sign of overall slope as ∆Vg = Vg − V max

g

swings from negative to positive values, indicating that
∆Vg changes the dominant majority charge carriers from
holes to electrons. This is a somewhat surprising result
at first sight, since the thickness of the sample (12 nm)
is still an order of magnitude larger than the screening
length of graphite (λs ≈ 0.4 nm [16]), and thus only rela-
tively small portion of the sample is affected by the gate
electric field. We will discuss this point quantitatively
below.

The aforementioned EFE in mesoscopic graphite sam-
ples is clearly presented by observing Rxx as a function of

gate voltage at a fixed magnetic field. Fig. 2 shows Rxx

as a function of Vg at a large magnetic field (Bm = 8.5 T)
for two samples (d = 12 and 42 nm) [17]. As expected
from Fig. 1, Rxx has a peak near a gate voltage where
∆Vg ≈ 0, falling slowly as |∆Vg| becomes large. We found
that this gate dependence strongly depends on d. For the
12 nm sample, Rxx is suppressed to ∼ 10% of its peak
value, while it is still ∼ 60% for the 42 nm sample at
∆Vg = 80 V. Such a sensitive dependence of Rxx(Vg)|Bm

on d is indicative of the reduced EFE by screening of
induced charge near the sample surface.
In order to elucidate the dependence of Rxx on Vg,

we employ the simple two band (STB) model [18],
which has been successful in understanding the MR in
graphite [6, 7]. The STB model assumes that the bot-
tom of the electron band and the top of the hole band
overlap with a small band overlap 2E0 near the Fermi en-
ergy EF . The resistivity of a sample, ρ, in the presence
of a magnetic field can be expressed by [14]:

∆ρ

ρ0
=

4µ2B2nenh/(ne + nh)
2

1 + [µB(ne − nh)/(ne + nh)]2
(1)

where ρ0 = ρ(B = 0), ∆ρ = ρ(B) − ρ0, µ is the average
carriers mobility, and ne and nh are the carrier concen-
trations of electrons and holes, respectively. Generally,
∆ρ varies the most as a function of B when electrons
and holes are nearly compensated (i.e., ne ≈ nh). From
Fig. 2, we infer that this condition is met at Vg ≈ Vmax

g

where the growth of the MR background as a function
of B is strongest in our samples (see the curves for
Vg = −10 V and Vg = −20 V in Fig. 1) [19]. As ∆Vg

increases from zero, the induced charge in the sample
screens the gate electric field and the electrostatic poten-
tial in the sample is given by φ(z) = φ0e

−z/λs , where z is
measured from the interface between the sample and the
substrate. The constant φ0 can be determined from the
electrostatic gate coupling to the sample. By integrating
over the induced charge in the sample, we obtain φ0 =
α∆Vg with the constant α−1 = 1+ ε0(1− e−d/λs)/λsCg,
where Cg is the gate capacitance per unit area of the
sample and ε0 is the vacuum permittivity [12].
We incorporate this local electrostatic potential to

the STB model by considering a gradient in ne and
nh. Suppose ∆Vg > 0, the local electrostatic potential
will pull down the electron and hole bands by |e|φ(z)
(Fig. 2 lower inset). For a sufficiently large gate volt-
age, such that |e|φ0 > E0, the sample can be devided
into three regions by introducing a hole depletion depth,
tdp = λs log(|e|φ0/E0): (I) 0 < z < tdp, where nh ≃ 0;
(II) tdp < z <

∼ tdp + λs, where 0 < nh < ne; and
(III) z > tdp + λs, where nh ≈ ne. In region (I), only
electrons participate in the transport, and ρ(z) increases
as z approaches zero, owing to the electric field induced
accumulation of ne near the surface. In region (II), the
MR is described by Eq. 1, so a steep increase of ρ(z)
is expected as ne − nh becomes small. In region (III),
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FIG. 3: (a) The SdH Oscillations observed in Fig. 1, after sub-
traction of smooth backgrounds. Solid (open) symbols corre-
spond to peak (valley) of the oscillations found after passing
the curve through a low pass filter (dotted line). Curves are
displaced for clarity. (b) Landau plots (see text) obtained
from (a). Negative indices are assigned to the hole branch for
clarity. Lines are linear fits to each set of points at different
Vg. Inset: the frequency of the SdH oscillations obtained from
the slopes of the line fits in (b) as a function of gate voltage.

the gate electric field is completely screened, so ne ≈ nh

and ρ(z) ≈ ρmax = Rxx(∆Vg = 0)d. The exact op-
posite argument works for a sufficiently large negative
gate voltage, where electrons are depleted. Note that
for small |∆Vg |, where |eφ0| < E0, region (I) disap-
pears (i.e., tdp = 0). From above discussions, we now
build a quantitative model to describe ρ(z). Accord-
ing to the STB model ne(ǫ), nh(ǫ) ∝ ǫ3/2, where ǫ is
measured from the bottom of the respective band edge,
ρ(z)/ρmax is obtained from Eq. 1 (Fig. 2 upper inset).
Then the resistance of the sample can be evaluated from

R−1 =
∫ d

0
ρ−1(z)dz for fixed B and Vg. Following in

this way, a reasonable fit is obtained for both 12 nm
(dashed line) and 42 nm (dotted line) samples as shown
in Fig. 2. In this fit, we use E0 = 15 meV, a value quoted
in [1], and obtain Cg = 26 aF/µm2 (12 nm sample) and
24 aF/µm2 (42 nm sample) as a result of the fit. These
capacitance values are in reasonable agreement with our
previous estimations in a different analysis on the same
samples [12]. It is noteworthy that for a large Vg such
that |e|φ0 ≫ E0, ρ(z) ≪ ρmax in region (I), and thus
a significant portion of the total current flows in this
region. Furthermore, as ∆Vg increases, tdp grows only
logarithmically. Even at ∆Vg ≈ 100 V, the largest gate
voltage applied, tdp ≈ 1 nm, which corresponds to only
∼ 3 bottom layers. Therefore, only a few of the bottom
layers of the sample are responsible for the observed EFE
modulation of the galvanomagnetic transport quantities.

We now turn our attention to the quantum oscillations
observed in our mesoscopic graphite samples. The strong
EFE modulation of the carrier density in the bottom lay-
ers allows us to probe the quantum oscillations in these
layers with a continuously tunable carrier concentration.
Fig. 3(a) redisplays the separated SdH oscillations as a
function of B−1, obtained from the MR data shown in
Fig. 1 after subtracting out the smooth background. The
SdH oscillations indicate the oscillatory density of states
at EF as a quantized Landau level passes through EF .
The frequency of SdH oscillations, fs, is related to the ex-
tremal area of the electron and hole pockets of the Fermi
surface by fs = h̄cAe,h

k /2π|e|, where Ae
k and Ah

k are the
areas of extremal electron and hole pockets, and h̄ and
c are Plank constant and speed of light respectively [15].
Since ne and nh are modulated by Vg, the observed vari-

ation of fs can be explained by the change of Ae,h
k .

In order to demonstrate the change of fs quantita-
tively, we first locate the major peaks (solid symbols)
and valleys (open symbols) in the SdH oscillations after
low pass filtering of the data [20]. The value of B−1 for
a peak (valley), B−1

m , is indexed by ν, an integer (a half
integer) number that corresponds to the Landau level re-
sponsible for the particular oscillation. Fig. 3(b) shows
that each set of points (B−1

m , ν) at a given Vg are on a
straight line that intercepts the origin, implying that the
period of SdH oscillations is regular. From the slope of
these lines we obtain fs at different Vg (Fig. 3(b) inset).
The obtained fs’s are increasing with |∆Vg|. Therefore,
we believe that the obtained fs corresponds to Ae

k for
∆Vg > 0 and to Ah

k for ∆Vg < 0. This conclusion allows
us to compare the experimentally observed fs with the
expected value from the STB model. Assuming the Fermi
surface of graphite is described by the overlap of elec-
tron and hole bands in STB model, Ae

k ∝ (α∆Vg + E0)
and Ah

k ∝ (−α∆Vg + E0). This relationship leads to
fs(|∆Vg |)/f

0

s = 1+α|∆Vg|/E0, where f
0

s = fs(∆Vg = 0).
From the values of α and E0, determined separately
above, we estimate f(∆Vg = 50V )/f0 ≈ 4.8, which is in
reasonable agreement with the experimentally observed
ratio 4.3.

Finally, we discuss the temperature dependence of the
SdH oscillations. Fig. 4 shows the oscillatory MR at two
extreme gate voltages, Vg = +40 V and Vg = −60 V,
at various temperatures. At these extreme gate voltages,
the transport in the sample is dominated by only one
type of carriers in a few bottom layers. Thus, the SdH
oscillations in the upper (lower) panel of the figure cor-
respond to electron (hole) Landau levels in the sample.
In both cases, the observed SdH oscillation amplitude
is gradually damped away as the temperature increases.
The temperature dependent SdH oscillation amplitude
has been used to extract the effective mass of charge car-
riers [21]. At a fixed magnetic field, the temperature
damping factor of the SdH oscillation amplitude is given



4

FIG. 4: Normalized magneto-resistance of the sample in Fig 1
at Vg = 40 V (upper panel) and Vg = − 60 V (lower panel).
For the upper panel data are taken at temperatures 1.7, 4,
10, 13, 15, 20, 25, and 30 K. For the lower panel, data are
taken at temperatures 1.7, 4, 10, 13, 15, and 20 K. Insets:
SdH oscillation amplitudes divided by temperature, T , at a
fixed magnetic field at above temperatures. The solid lines
are fits to a model (see text).

by:

RT =
2π2kBTm

∗/eh̄B

sinh(2π2kBTm∗/eh̄B)
(2)

where m∗ is the effective mass of the carriers. We find
that Eq. 2 fits the observed amplitude damping very well
(Fig. 4 insets). As a result from the fittings, the effective
electron mass m∗

e = (0.052 ± 0.002)me and hole mass
m∗

h = (0.038 ± 0.002)me are obtained, where me is the
bare electron mass. These values agree well with 0.057me

and 0.039me, reported effective mass of electrons and
holes in high quality bulk graphite crystal [1].
In summary, we report galvanomagnetic transport

in mesoscopic graphite samples consisting of tens of
graphene layers. Strong modulation of the Hall resistance
as well as the magneto-resistance has been observed as
the applied gate voltage changes. The Landau level for-
mation of electron and hole carriers is also tuned by the
gate. The unique experimental method discussed here
can be applied to other layered materials to investigate
novel transport phenomena in unconventional two dimen-
sional systems.
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