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We report an experimental and a theoretical study of the radial elasticity of multi-walled carbon
nanotubes as a function of external radius. We use atomic force microscopy and apply small inden-
tation amplitudes in order to stay in the linear elasticity regime. The number of layers for a given
tube radius is inferred from transmission electron microscopy, revealing constant ratios of external
to internal radii. This enables a comparison with molecular dynamics results, which also shed some
light onto the applicability of Hertz theory in this context. Using this theory, we find a radial Young
modulus strongly decreasing with increasing radius and reaching an asymptotic value of 30 ± 10
GPa.

The exceptional mechanical, electrical, and thermal
properties [1–8] of carbon nanotubes (CNTs) have at-
tracted great scientific and technological interest. CNTs
have cylindrical symmetry with axial mechanical prop-
erties characterized by the strong in plane covalent C-C
bond. The strength of this bond gives rise to an extraor-
dinary axial stiffness, as pointed out by several experi-
mental [1, 9, 10] and theoretical studies [7, 8, 11] finding
values for the axial Young modulus of about 1 TPa. In
graphite, the C11 in plane elastic constant is 1.06 TPa,
while the perpendicular elastic constant C33 is only 36
GPa [7]. Similarly the radial Young modulus of CNTs
is expected to be much smaller than the axial one. Ev-
idence for the softness of CNTs in the radial direction
has been reported in experiments under hydrostatic pres-
sure [12], where a critical pressure of only 2 GPa has led
to the collapse of single-walled CNTs with a radius of
0.7 nm. Achieving a fundamental understanding of the
radial deformability of CNTs is important for applying
them in nanoelectromechanical and nanoelectronic sys-
tems. For example, the radial deformation of CNTs may
strongly affect their electrical properties [3, 13–16]. How-
ever, our quantitative understanding of the radial elas-
ticity of CNTs is so far based on studies performed on
only one tube, with an unknown number of layers, and

using deformations up to the nonlinear regime [17–20].

In principle, the simplest way to measure the radial
elasticity of CNTs would be to indent an atomic force
microscope (AFM) tip into a NT adsorbed at a surface
and to measure force vs. indentation curves. However, in
practice, such measurements are very challenging, since
in order to stay in the linear elastic regime, one has to
measure forces of a few nanonewtons vs displacements
of a few Å. Some authors have proposed an alternative
AFM based method to investigate the radial elasticity of
CNTs [17]. While scanning the tip across the sample, the
authors vertically vibrate the cantilever in noncontact or
tapping mode with amplitudes in the range of several
hundreds of Å and with the turning point situated a few
Å above the sample. Because of the large amplitudes,
a considerable fraction of the signal arises from the van
der Waals forces acting between the tip and the tube, and
only a small part comes from the elastic properties of the
tube. Therefore in these experiments in order to extract
quantitative results on the radial deformation of a CNT it
is necessary to evaluate the van der Waals forces taking
the cantilever, tip, and sample geometry into account,
which is far from trivial [21].

Here, we present quantitative measurements of the ra-
dial elasticity of 39 multi-walled CNTs with external radii
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ranging from 0.2 to 12 nm and having a constant ratio
of external to internal radii of Rext/Rint = 2.2 ± 0.2.
We underline that the NT with Rext = 0.2 is most likely
a single-walled NT. By means of modulated nanoinden-
tation with an AFM [22], we find that the radial stiff-
ness strongly increases with decreasing external diame-
ter. The radial Young modulus Erad is extracted from
the experimental results by applying the Hertz model.
Erad is found to decrease to an asymptotic value of 30
GPa for larger tube sizes. We also perform molecular
dynamics (MD) simulations with empirical C-C poten-
tials to mimic the experiments. Force-indentation curves
obtained by the simulations indicate a similar trend in
Erad(Rext).

The multi-walled CNTs are produced by chemical va-
por deposition (CVD) using acetylene as carbon feed-
stock [23]. A drop of an alcohol suspension of the ob-
tained CNTs is deposited onto a silicon surface and the
solvent is allowed to evaporate at room temperature. In
this way, the CNTs are adsorbed on the Si substrate
with their principal axis parallel to it. The CVD produc-
tion method generates CNTs with Rext/Rint = 2.2±0.2,
as obtained from a large number of measurements with
transmission electron microscopy (TEM) (see inset of
Fig. 1). The morphology and the mechanical properties
of CNTs have been measured with an AFM [24] operat-
ing in contact mode in ambient conditions and equipped
with commercial SiN cantilevers with a tip radius of typ-
ically 35 nm. Normal cantilever spring constants, klev,
have been carefully calibrated and typical values were
about 46 N/m. For each NT, the tip radius has been
explicitly determined in two ways: first, by using the
equation Rtip = w2/16RNT , where RNT is the tube ra-
dius inferred from its apparent height and w is its appar-
ent width; second, by imaging the tip with a scanning
electron microscope. Both methods yielded consistent
results.

MD simulations are performed by modeling the AFM
tip as a rigid continuous sphere and the NT by atoms
interacting through an empirical potential. Forces be-
tween carbon atoms are derived from a two-body pair
energy plus a three-body angular penalty for the cova-
lent energy (intralayer energy), as developed by Marks
[25]], and from a truncated Lennard-Jones potential for
the interlayer energy, as applied by Lu [7]. The free po-
tential parameters are fitted on the bulk graphite elastic
constants, C11, C12, and C33, the cohesive energy, and
the two lattice constants. CNTs are built with graphene
sheets spaced by an inter-wall distance as close as possible
to the graphite interlayer distance, the chirality being a
free parameter. Subsequently, the CNTs are compressed
between the rigid sphere and a rigid plane using short
range, purely repulsive potentials for both interactions.
The two ends of the NTs are frozen. The NT length and
the sphere radius are, respectively, fixed at 20 and 12 nm.
In all cases studied, the largest diameter of the contact
area is smaller than 1.4 nm. Technically, the sphere is
slowly moved against the NT, while the kinetic energy is

FIG. 1: Experimental normal contact stiffness vs. normal
indentation force F for a 3 nm tube radius. Errors presented
here are due to mean errors on the detection signal dF [28],
taking into account the uncertainty on the cantilever stiffness.
Experimental data are fitted with Eqs. (1) and (2). In the
inset we show Rext/Rint as a function of Rext, as obtained by
TEM.

periodically removed. Expressed in the usual MD units
(m.a.u., eV, and Å), the time step is 0.4 and the sphere
velocity is equal to or lower than 2 ·10−5 Å per time step.

Normal modulated nanoindentation consists of indent-
ing an AFM tip in a sample up to a fixed distance while
small oscillations are applied to the sample. Oscillations
and indentation are colinear, normal to the substrate and
to the NT long axis. The amplitude of the oscillations is
chosen very small, 1.3 Å in our case, in order to remain in
the sticking regime. In this amplitude range and exper-
imental geometry, the normal force F required to move
vertically the NTs substrate by a distance D with respect
to the cantilever support coincides with the force needed
to elastically stretch two springs in series [26, 27]: the
cantilever, with stiffness klev, and the tip-sample contact,
with stiffness kcont. If D is the total normal displacement
of the NTs substrate, i.e., D is equal to cantilever bend-
ing plus tip and NT normal deformation, and F is the
total normal force, this configuration allows the measure-
ment of the total stiffness ktot at each load, defined by
the relation

dF/dD = ktot = (1/klev + 1/kcont)
−1 (1)

Since klev is known, a measurement of dF/dD at differ-
ent normal loads leads to the value of kcont as a function
of F [28]. Figure 1 shows the results of the measure-
ment of kcont(F ) for a NT with a radius of 3 nm. F = 0
nN corresponds to the cantilever being unbent. The fact
that the tip and the sample remain in contact at nega-
tive external loads indicates the presence of an adhesive
force.
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By integrating the equation dF = kcont · dz, where
z is the indentation of the tip in the NT [29], we ob-
tain F vs. indentation z from the experimental curves
kcont(F ). The result is shown in Fig. 2(a) for NT radii
from 0.2 to 5.25 nm. If we call F (z)/z the radial stiffness
of the NT, Fig. 2(a) indicates that the radial stiffness in-
creases when the tube radius is decreasing for any value
of z in the range explored by the experiment. Figure
2(b) presents the normal force vs. the indentation dis-
tance obtained by the simulations and with Rext/Rint

kept close to the experimental value for CNTs with 2
to 6 layers. The respective NT external radii are 0.61,
1.22, 1.82, 2.43, and 3.65 nm, while the ratios between
external and internal radii are kept constant and equal
to 2.2. In agreement with experiment, the nanotubes
radial stiffness also increases when its radius decreases,
and again in agreement this effect is less pronounced for
larger NT radii. Compared to the results of Fig. 2(a),
normal forces at equivalent indentation distances are typ-
ically 1 order of magnitude lower in the simulation. This
is mainly attributed to the fact that the tip radius in the
experiment is a factor of 2 larger than the sphere radius
in the simulation.

We can extract the radial CNT Young modulus from
kcont vs. F measurements by modeling the contact be-
tween the AFM tip and the CNTwith the Hertz model
[13, 17, 18]. We underline that the extracted Erad is
therefore the radial linear elasticity. The Hertz model
predicts a 3/2 power law dependence of F on z, which
we indeed observe in our experiments [see Fig. 2(a)].
From the calculations, we find the 3/2 power law for
filled CNTs, while there are deviations from F ∝ z3/2

for hollow NTs with the cross sections used in experi-
ment [Rext/Rint = 2.2; see Fig. 2(b)]. We attribute
the deviations to the fact that the calculations have been
performed for technical reasons with a smaller tip radius
than the one in the experiment. This suggests that our
experiment is just at the limit where the Hertz model
might be applied, whereas the size of the contact in the
simulations falls below this limit.

Under the assumptions of standard elasticity theory,
the Hertz model gives the dependence of the indentation
distance z vs. the normal force F between two elastic
solids in contact [30]. Although very sophisticated exten-
sions of this model were developed to include the effect
of the adhesion at low external forces [31], in the context
of this work it suffices to use the first level approxima-
tion, consisting of an additive correction of the normal
force F . We consider the contact between a sphere and a
cylinder (corresponding to the tip and the NT), and we
include the adhesive force Fadh, which is experimentally
determined. The Hertz theory gives

kcont = β

(
R(F + Fadh

K̃2

)1/3

(2)

with 1/R = 1/Rtip + 1/2RNT and K̃ = 3/4 · ((1 −
ν21)/E1 + (1 − ν22)/E2), where ν1,2 and E1,2 are, respec-

FIG. 2: (a) Normal force as a function of indentation for NTs
of different radii, obtained by the integration of experimental
1/kcont vs. F curves using the trapeze method. (b) Theoretical
normal force as a function of indentation for NTs of different
radii (different number of layers), obtained by simulating the
indentation of a rigid sphere in a NT.

tively, the Poisson ratios and radial Young moduli of the
tip and NT. β is a coefficient that takes the geometrical
aspect of the contact area into account [32]. kcont vs. F
(as in Fig. 1) is then fitted with Eq. (2), the Young mod-
ulus E2 = Erad being the only free fit parameter for each
NT. The elastic constants of the SiN tip are ν1 = 0.27
and E1 = 155 GPa [33]. The Poisson ratio of the NT is
taken as ν2 = 0.28, a mean value of common materials.
Obviously, any reasonable errors on ν2 would have only
a minor impact on the extracted Erad and even less so
on the variation of the modulus with the NT radius.

The obtained values of Erad as a function of the CNTs
external radius are reported in Fig. 3. The radial Young
modulus, as previously observed for the radial stiffness,
increases when decreasing the NT radius. More precisely,
Erad increases sharply for Rext smaller than 4 nm, while
it is almost constant and equal to about 30 ± 10 GPa
for Rext between 4 and 12 nm. This last value is, within
the experimental error, equal to the Young modulus of
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FIG. 3: Experimental values of the radial Young modulus of
CNTs as a function of Rext as obtained from normal modu-
lation experiments. Error bars correspond to mean errors on
tubes of the same diameter. Errors due to the fit of kcont vs.
F are included in the symbol size.

graphite along its c axis, Egraphite = 36 GPa [34]. For
the NTs studied in this work, Rext is proportional to Rint

and both are proportional to the number of layers since
the distance between layers is approximately constant [7].
Thinking of the elastic energy necessary to enroll a plane,
we could deduce that the radial rigidity and hence Erad of
a NT should increase by increasing the number of layers
and by decreasing the internal radius. This is confirmed
by measurements of radial deformations of NTs due to
van der Waals forces between the tube and the substrate
[35, 36]. In both these studies, the radial deformation
increases with the radius for single-walled NTs and de-
creases with the number of layers. Our experiments show
that, for small Rint, Erad increases sharply by decreas-
ing Rint; we conclude that in this size range the radial
rigidity is controlled by the magnitude of Rint, whereas
the number of layers plays a minor role. This result is
in agreement with a previous theoretical study [7] that
shows that the elastic properties of a NT withRint = 0.34
nm do not change by increasing the number of layers as
long as the interlayer distance is fixed to 0.34 nm, i.e., the
distance between planes in graphite. A similar finding is
also obtained in the simulations of Ref. [36], where the
radial deformation of a single-walled NT is the same of a
multi-walled NT when the radius of the first one is equal
to Rint of the second one. For large Rint, our experiments
show that Erad is almost constant. This could mean that
the effect due to the increase of Rint is counterbalanced
by the increase of the number of layers, up to the point at
which the NTs properties reach asymptotically those of
graphite. We believe that the behavior shown in Fig. 3
is not restricted to NTs with Rext/Rint = 2, but it is ex-
pected for other ratios larger than 1 since the asymptotic
value corresponds to E of graphite.

The radial stiffness of multi-walled CNTs has been in-

vestigated experimentally by Yu et al. [17] and by Shen
et al. [18]. In both cases, one NT with an unknown
number of layers is compressed, the maximum indenta-
tion distance being larger than 40% of the initial diam-
eter. In Ref. [17], the force vs. indentation distance
curves are obtained through a model of the tip-NT van
der Waals forces. By interpreting these curves with the
Hertz model, they find, for a NT with a diameter of 8 nm,
a radial Young modulus between 0.3 and 4 GPa, which
is roughly 1 order of magnitude lower than our results
for NTs of similar diameters. This discrepancy can be
ascribed to a difference in the number of graphene layers
forming the NT, which is plausible since the NT prepara-
tion techniques are different. The radial elastic modulus
of the NTs obtained in Ref. [18], where the tubes are de-
formed up to the nonlinear regime, is hardly comparable
to our findings since its definition differs notably from
the one exposed above.

In summary, we measured the radial stiffness and
Young modulus of carbon nanotubes. They steeply de-
cline with increasing radii, until the Young modulus takes
on an asymptotic value of 30 ± 10 GPa for CNTs with
Rext > 5 nm. The experiments were performed with
modulated nanoindentation and on statistically signifi-
cant amounts of CNTs with well-defined external to in-
ternal radii. This trend is very well reproduced by MD
simulations.
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