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Université Paul Sabatier, 118 Route de Narbonne, F-31062 Toulouse, France
(Dated: June 11, 2018)

We present a method for including inelastic scattering in a first-principles density-functional
computational scheme for molecular electronics. As an application, we study two geometries of
four-atom gold wires corresponding to two different values of strain, and present results for nonlinear
differential conductance vs device bias. Our theory is in quantitative agreement with experimental
results, and explains the experimentally observed mode selectivity. We also identify the signatures
of phonon heating.
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Atomic-size conductors are the components of the
emerging molecular electronics [1]. The correspond-
ing molecular devices have new functionalities that ex-
ploit quantum phenomena, such as phase coherence and
resonances. A substantial effort has been devoted to
molecular electronics, producing a wealth of experimen-
tal data on electronic transport at the molecular level,
e.g.,[2, 3, 4]. Most recently the issue of vibrational effects
has drawn much attention since inelastic scattering and
energy dissipation inside atomic-scale conductors are of
paramount importance in device characteristics, working
conditions, and – especially – stability [5, 6, 7].
Inelastic effects are interesting, not only because of

their potentially detrimental influence on device func-
tioning, but also because they can open up new possibili-
ties and operating modes. Indeed, these effects have been
used to identify the vibrational spectra of objects in tun-
neling junctions. This is the case of the inelastic electron
tunneling spectroscopy (IETS) both in metal-insulator-
metal junctions [8] and on surfaces with the scanning
tunneling microscope (STM) [9]. Recently, similar vibra-
tional signatures in the high-conductance regime have
been revealed [3, 10, 11]. In one of these studies Agräıt
and co-workers used a cryogenic STM to create a free-
standing atomic gold wire between the tip and the surface
of the substrate. The STM was then used to measure the
conductance against the displacement of the tip, making
it possible to determine the approximate size as well as
the level of strain of the wire. The data show distinct
drops of conductance at particular tip-substrate voltages
(symmetric around zero bias), consistent with the inter-
pretation that the conducting electrons were backscat-
tered from vibrations. It was assumed that that the on-
set of the drops coincided with a natural frequency of the
wire at certain sizes and strains.
Several different theories have been put forward to

address the effects of vibrations on electrical conduc-
tance. In the tunneling regime a substantial theoretical
effort was undertaken right after the first experimental

evidence [12] of vibrational signals in the tunneling con-
ductance [13, 14]. Later, general tight-binding methods
including inelastic effects were developed [15, 16]. More
recently, the combination of ab initio techniques (such
as the density-functional theory, DFT), and nonequilib-
rium Green’s function (NEGF) techniques led to a mi-
croscopic understanding of conduction processes in the
elastic regime, e.g., [17]. Detailed ab initio studies of
IETS with STM have also appeared [18, 19]. To the best
of our knowledge, only few realistic calculations have ad-
dressed inelastic effects in the high-conductance regime.
Montgomery and co-workers [20, 21] used a lowest order
perturbation theory (LOPT) approach for the electron-
phonon (e-ph) interaction to estimate the inelastic con-
tribution to the current through atomic gold wires within
a tight-binding description. LOPT have also been com-
bined with ab initio methods to study vibrational effects
in point contacts and molecular junctions [22, 23]. LOPT
cannot be applied in all circumstances; a point in case is
polaronic effects which have been shown to be essential
for the correct description of transport in long chains [24].
Unfortunately, going beyond LOPT is a highly nontrivial
task; see, e.g., [25, 26, 27].
In this Letter we formulate a first-principles theory of

electron transport including inelastic scattering due to
phonons. We apply it to atomic gold wires, for which
high quality experimental data are available, thus allow-
ing a stringent test of the predictive power of our scheme.
We employ DFT [28] for the electronic structure com-
bined with an NEGF calculation of the steady current
and power flow. We go beyond LOPT using the self-
consistent Born approximation (SCBA) for the e-ph in-
teraction. For gold wires we find that the only signifi-
cant inelastic scattering mechanism is due to longitudi-
nal modes with “alternating bond length” (ABL) char-
acter, and show how “heating” of these active modes
can be identified in a transport measurement. The the-
oretically computed values for conductance changes, fre-
quency shift with elongation, and slope in conductance
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with voltage are in excellent agreement with experiments.
The theory further shows that as the wire is stretched
new vibrational modes become effective.
Our method consists of essentially three consecutive

steps comprising the calculation of (i) mechanical normal
modes and frequencies, (ii) electronic structure and e-ph
couplings in a localized atomic-orbital (AO) basis set,
and (iii) inelastic transport with NEGF. We partition the
system into left (L) and right (R) electrode, and central
device region (C), in such a way that the direct coupling
between the electrodes is negligible. Hence we may write
the electronic Hamiltonian as

H = HL + VLC +HC(Q) + VRC +HR , (1)

where Hα is a one-electron description of electrode α =
L/R and VαC the coupling between α and C. The central
part HC(Q) depends explicitly on a 3N -dimensional dis-
placement variable Q which corresponds to mechanical
degrees of freedom of N atoms in region C.
To obtain the most accurate normal modes Qλ and fre-

quencies Ωλ within DFT of a given structure we employ a
plane-wave (PW) basis [29]. Except for this purpose we
use DFT with an nonorthogonal basis set of numerical
AOs with finite range [17, 30, 31], which unambiguously
allow us to partition the system as mentioned above. In
this basis we expand theQ-dependence of the central part
Hamiltonian to first order in Qλ (since the vibrational
amplitudes are small compared with the bond lengths),
and write

HC(Q) ≈ HC(0) +

3N∑
λ=1

M
λ(b†

λ
+ bλ), (2)

where b†
λ
(b

λ
) is the creation (annihilation) operator of

oscillator mode λ, and the coupling matrices Mλ are cal-
culated using finite differences [32]. If the central region
C is sufficiently large the coupling elements are localiz-
able within its subset of the AO basis.
The transport calculation is based on NEGF tech-

niques and the e-ph interaction treated within SCBA [26,
27, 33]. The electrical current Iα and the power transfer
Pα to the device (per spin) from lead α are [26, 34]

Iα = e〈Ṅα〉 =
−e

~

∫ ∞

−∞

dω

2π
tα(ω), (3)

Pα = −〈Ḣα〉 =
1

~

∫ ∞

−∞

dω

2π
ωtα(ω), (4)

tα(ω) = Tr[Σ<
α (ω)G

>(ω)−Σ
>
α (ω)G

<(ω)], (5)

whereNα is the electronic number operator of lead α, G≶

the electronic lesser/greater Green’s function in the de-

vice region C, and Σ
≶
α the lesser/greater self-energy due

to coupling of C to α. We evaluate the SCBA e-ph self-
energy Σph using free phonon Green’s functions, which
involve average mode occupations Nλ (also in nonequilib-
rium). The coupled equations forG and Σph are iterated

until self-consistency is achieved. This approximation is
reasonable for a weakly interacting system as long as the
mode damping rates are orders of magnitude smaller than
the oscillator frequencies. The SCBA scheme guarantees
current conservation, i.e. IL = −IR [26].

We study a linear four-atom gold wire under two dif-
ferent states of strain, as shown in Fig. 1, corresponding
to electrode separations of L = 12.22 Å and L = 12.68 Å.
The semi-infinite gold electrodes are modelled as perfect
(100) surfaces in a 3× 3 unit cell. We take the electrode
temperature to be T = 4.2 K as in the experiments. Al-
lowing the wire atoms to move we calculate the phonon
modes and energies for each of the two structures. In
the AO basis we determine the static Hamiltonian of
the whole system as well as the e-ph couplings. These
are then downfolded on the basis of the four wire atoms
(which constitutes region C) with self-energiesΣα to rep-
resent the electrodes. We calculate the phonon signal in
the non-linear differential conductance vs bias voltage
(G− V ) with Eq. (3) for two extremal cases: the energy
transferred from the electrons to the vibrations is either
(i) instantaneously absorbed into an external heat bath,
or (ii) accumulated and only allowed to leak via electron-
hole (e-h) pair excitations. We will refer to these limits as
the externally damped and externally undamped cases,
respectively.

The externally damped limit corresponds to each mode
having a fixed occupation Nλ ≈ 0 as set by a Bose-
Einstein distribution with a temperature T = 4.2 K. This
leads to the results shown in Fig. 2. The conductance is
close to the quantum unit G0 = 2e2/h for zero bias and
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FIG. 1: Geometry of a four-atom gold wire under two differ-
ent states of stress corresponding to an electrode separation
of (a) L = 12.22 Å and (b) L = 12.68 Å. The electrodes are
modelled as perfect (100) surfaces, from which only the atoms
closest to the wire are shown. The ABL modes, which cause
the inelastic scattering, are shown schematically with arrows
below each structure, together with mode energy Ωλ and ex-
tracted conductance drop ∆G/G(0V).
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displays symmetric drops for finite bias. A comparison
of the two structures indicates that straining the wire
results in lower zero-bias conductance (related to weak-
ened couplings to the electrodes) as well as mode soft-
ening and enhanced phonon signal. These three effects
were also observed experimentally (the shift in zero-bias
conductance being most dramatic close to rupture). The
total conductance drops ∆G/G(V = 0) are found to be
0.5% for the wire L = 12.22 Å and 0.7% for L = 12.68 Å.
These drops occur at threshold voltages corresponding
to the ABL mode energies. By including one mode at a
time, we can investigate the contribution from each mode
separately. This reveals that the inelastic scattering, for
both geometries, originates only from longitudinal modes
with ABL character. For the linear gold wire the con-
duction channels are rotationally invariant, hence they
cannot couple to transverse modes. On the other hand
for a zigzag conformation, which under certain strains
is favorable [35], also transverse modes could possibly
contribute. Indistinctness of such signals are thus fully
compatible with a linear geometry. The importance of
ABL character can be understood as a reminiscence of
the momentum conservation in infinite one-dimensional
wires, where the only allowed inelastic (intraband) tran-
sitions correspond to electrons interacting with phonons
with a wavenumber of approximately twice the Fermi
wavevector (backscattering) [11]. For L = 12.22 Å we
find a conductance drop ∆G/G(V = 0) from the ABL
mode of 0.4%, and for L = 12.68 Å drops of 0.4% and
0.2% from the primary and secondary ABL mode, re-
spectively. These modes and their contributions to the
conductance are also shown in Fig. 1. The contribution
from any other mode is found to be less than 0.06%.
The salient features of the experiments [10, 11], viz.

(i) the order of magnitude of the conductance drop, (ii)
the mode softening, and (iii) the increased phonon signal
with strain, are all properly reproduced by our calcula-
tions. In particular, we find the same frequency shift
with elongation (∆Ω/∆L = −7 meV/Å) as observed ex-
perimentally. From our analysis we conclude that the
enhanced signal with strain is not due to increased e-ph
couplings, but rather due to the fact that the elec-
tronic structure changes. This change affects the bond
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G
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FIG. 2: Differential conductance and its derivative for the
four-atom gold wire at two different tensions in the case where
the oscillators are externally damped (Nλ ≈ 0). All modes
are included in this calculation.

strengths, and hence the normal modes of the structure,
such that a second mode acquires ABL character. This
is contrary to considerations based on an infinite one-
dimensional wire model [11].

In the externally undamped limit we determine the
mode occupations for a given bias voltage using the fact
that the system is in a steady state. With Eq. (4) we
require that the net power into the device PL + PR, which
equates the net power transferred from the electrons to
the phonons, must be zero. This in turn puts a restriction
onNλ. For simplicity we include only the most important
mode. The conductance calculation is shown in Fig. 3a.
Compared with the externally damped results Fig. 2, the
notable differences are a slightly larger drop as well as
a finite slope in the conductance beyond the onset of
inelastic scattering. Fig. 3b shows where the vibrational
excitation sets in and starts to increase linearly with bias.
At a voltage V = 55 mV the occupation is found to be
the same as if the mode was occupied according to a
Bose-Einstein distribution with temperature T = 300 K.

A finite slope was also observed in the experiments,
and speculated to be directly related to nonequilibrium
phonon populations [11]. This is confirmed by our
calculations. Quantitatively we find dG/dV (20mV) ≈
−0.6 (G0V)

−1 and dG/dV (20mV) ≈ −0.7 (G0V)−1 for
L = 12.22 Å and L = 12.68 Å, respectively, which is only
slightly larger than detected for relatively long gold wires.
In reality the phonon modes are damped also by mechan-
ical coupling to bulk phonons in the electrodes. This
coupling depends strongly on the nature of the chain-
electrode contact and hence, understood poorly. We ex-
pect that the typical damping conditions lead to G − V
curves in between Fig. 2 and Fig. 3a.

The observed linewidth of the phonon signal is set by
a combination of both electronic temperature and mode
broadening [8]. The temperature broadening alone is of
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FIG. 3: (a) Differential conductance and its derivative for the
four-atom gold wire at two different tensions in the externally
undamped limit. Only the most important mode is included
in this calculation. (b) Mode occupation N vs bias voltage.
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the order 5kBT ≈ 2 meV (FWHM). As the atomic wire
is elongated, new modes contribute to the drop. Hence,
our calculations show that the corresponding linewidth
will increase from 2 to 4 meV due to the appearance of a
second mode, cf. Fig. 2. In addition to this, mode broad-
ening due to coupling to the electrons and to vibrations
in the bulk also contribute. We estimate the damping of
the modes from e-h pair generation to be no more than
γe-h = 30-35 µeV [36], which is thus negligible here. In
the experiment the linewidth is typically around 5 meV,
and hence it is either a result of the overlap of several
vibrational modes or due to significant coupling to bulk
modes. This could be clarified with measurements at
even lower temperatures, where it might be possible to
resolve several modes as a function of the wire strain.
As we show elsewhere [26, 37], it is possible to de-

scribe the system qualitatively with a single-orbital tight-
binding model. Using this simplified approach longer
chains can be examined, for which first-principles calcu-
lations are not feasible at the present stage. The simple
model predicts that the conductance drop ∆G/G(V = 0)
and slope dG/dV beyond the threshold scale linearly with
the number of atoms in the wire (we considered up to 40
atoms). This supports the notion that the inelastic scat-
tering occurs inside the wire itself.
In conclusion, we investigated inelastic effects in

atomic gold wires using a first-principles approach. We
calculated the non-linear differential conductance for two
structures of a four-atom wire, and clarified the mode
selectivity observed experimentally as well as the mecha-
nism behind phonon signal increase with elongation. Fur-
ther, we considered two extremes of external mode damp-
ing, which lead to the suggestion that local “heating” of
the wire is significant in the experiment.
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[11] N. Agräıt et al., Chem. Phys. 281, 231 (2002).
[12] J. Lambe and R. C. Jaklevic, Phys. Rev. 165, 821 (1968).
[13] J. Appelbaum and W. Brinkman, Phys. Rev. 186, 464

(1969).
[14] C. Caroli et al., J. Phys. C 5, 21 (1972).
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