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We present a novel method for the calculation of the energgitieof stated)(E) for systems described by
classical statistical mechanics. The method builds on #gneion of a recently proposed strategy that allows
the free energy profile of a canonical system to be recoverttdnaa pre-assigned accuracy,[A. Laio and M.
Parrinello, PNAS 2002]. The method allows a good controlrdlie error on the recovered system entropy.
This fact is exploited to obtai®(FE) more efficiently by combining measurements at differentteratures.
The accuracy and efficiency of the method are tested for thedimensional Ising model (up to size 50x50) by
comparison with both exact results and previous studiets mMkthod is a general one and should be applicable
to more realistic model systems.

It has long been recognized that all energy-related therperature, it is still possible to exploit the Boltzmann bias
modynamic properties of a classical canonical system cafocalize the computational effort for exploring the regiafn
be calculated once the energy density of stal¥&) is phase space of relevance for a temperature of interestage.g.
known. In fact, starting from the partition functiod = a phase transition). In the following we will first descrilést
[ dE D(E)e~P¥, quantities like free energies, specific heatsgeneral strategy followed by its application to the typie
and phase transition temperatures can be computed in exence case constituted by the two-dimensional Ising model
straightforward manner. In principle, all canonical aver- The essence of the metadynamics approach is first to iden-
ages can be calculated through a multidimensional density Qify those relevant collective variables (CVs) that ardidiifit
states. Due to this central role in equilibrium thermodynamto sample. In other applications;10] a similar metodology
ics a Variety of theoretical and Computations studies hdve a was app“ed in order to observe a Specific transition (eg a
dressed the problem of how to obtdif E) (or, equivalently,  chemical reaction) in systems described by a complex atom-
the entropy profileS(E) = In(D(E)) in a reliable and effi-  istic Hamiltonian. At this scope CVs explicitly depending o
cient way. the microscopic configuration of the system have been em-
In principle, D(E) could be calculated from the histogram ployed, like, e.g., coordination numbers or distances betw
of the energies visited during a single “very long” constant specific atoms of the system. Here, we aim at reconstructing
temperature simulatior[1]. In practice, for any finite simu the canonical free-energy profil&(F) = F — T S(E) and
lation only a limited energy windows is sampled so that thethe relevant variable i& (which is also an explicit function of
recovery of the system thermodynamics over a wide temperahe microscopic configuration of the system). At each meta-
ture range is unfeasible. dynamics step the system evolution is guided by the gener-
Several alternative strategies have been developed to rerlised force which combines the action of the thermodynamic
edy this shortcoming. For example the multiple histogramforce (which would trap the system in free-energy minima)
reweighting technique relies on performing several simuladF(E)/dE and a history-dependent one which disfavours
tions at different temperatures, so as to explore diffef@rer- ~ System configurations already visited. The history-depand
lapping) energy intervall[2]. The various histograms hemt ~ potential, F, is constructed as a sum of Gaussians of width
optimally combined to obtaif)(E) over the union of the en- AFE and heightv centred around each value Bfalready ex-
ergy intervals. Another successful family of techniquessai  plored during the dynamics. As shown in refi[18}; fills in
at obtainingD (E) by changing iteratively the probability with time the minima in the free energy surface and, in the limit of
which the various energy levels are visited in stochastic dya long metadynamicB(E) + F(F) tends to become flat as
namics until the recorded energy histogram is “flat”. Sucha function of £ and hence- Fz(E) becomes an approximant
methods include entropic sampling [4], multicanonical andof F'(E).
broad-histogram techniques techniques|[3, 5] and alscethe r  Clearly, the exact form of the metadynamics equations and
cent method of Wang and Landau [6]. the choice of the parametets and AE may affect signifi-
These and similar techniques have proved to be very valusantly the accuracy of this estimate. Furthermore carefid ¢
able in a variety of contexts![7} 8, 9], but there is still ampl trol of the error is essential for reconstructing a reliatéd-
scope for alternative approaches that could provide imgatov Sity of states. This requires that the algorithm in ref.| [10]
efficiency and better error control. Here we propose to modbe substantially improved. The modified metadynamics equa-
ify and extend the metadynamics method recently introducetions are:
by two of us [10] for evaluatingD(E). The algorithm we
introduce allows a good error control on the explored energy
range. Moreover, although within our approa@kFE) could
be reconstructed performing simulations at virtually aam+
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EY) t positionE?, F; will present a bump in a region around
B gt AR 4 XL ED ) sayatp , Fe will p pinareg
( 2 ) |f (EY)] @) E* whose spread depends on the correlation time of the meta-

wherey is a random number between 0 and 1. The generalglynamlcs. This effect can be lessened if the contribution of

) o the Gaussians placed at the end of the dynamics are weighted
l’iﬁﬁ Iﬁ;cﬁi‘i Efr) _'33“;?:;:%{ (cﬁé; :%gﬁéfg ;;Fé(E)] less. Therefore, after the metadynamics with constang
y-dep P & terminated we reconstruct the free energy frét (E) =

_pun2 (e-Bv)? .
FL(E) = Zwe*% ) (3) - Zugt w tanh (t;—cu) e 282 wherer, is taken to be
u<t larger than the typical time required to sweep the “filled* en

. _ N ergy range. Other smoothing functions, suchias(1, £=%)
By displacing the center of the GaussiBii* with respectto  can, of course, also be chosen and have an analogous effect.

the point of evalugtlon of _the generalised forcte (equdlon 1 The modified metadynamics algorithm allows the efficient
the added Gaussian r?aX|maIIy compensgies’) and flat- reconstruction of'(E) in the explored energy range, within
tensk” + Fg ar(_)un_dE : _Th_e energy step perfo_rmed ?t €V an error that is ultimately controlled only by the Gaussan’
ery metadynamics iteration is chosen randomly in the iatlerv heightw. We demonstrate the quality of the algorithm by re-
betweer_lAE andL5AE (equati0|1;12) in order to reduce the constructing an “ideal”, pre-assignefl,(F) (see Fig.[lL). If
correlation induced by the dynamics. the method is void of systematic biases one would expect the
quantitydF' (E) = Fr (F) — F (E) to be, on average, con-
—————— G stant throughout the filled energy range. Moreover, we would
expect deviations from the constant average value to beesof th
order ofw. These properties are confirmed by the results pre-
-8 . sented in the inset of Fig. 1, where the uniformity of the aver
- . age value ob F'(FE) is apparent, together with the constancy
10k _ ofits dispersiong? (E) = (§F (E)*)— (§F (E))2. The plots
also illustrate the benefits of the “smoothing” procedurerov
the last part of the metadynamics trajectory, since thigltes
2= in a decrease of the spreadddf(E). As is visible in the inset

- 02 1 of Fig. 1, the dispersion is further confirmed to be approxi-
mately proportional tav. An important fact is that near the
boundaries of the explored energy inter¥a)(F) decays to
zero and hence deviates from the true free energy. To igentif
16— the interval over whichFi is reliable we need to ascertain if

- w w the number of Gaussians accumulated at a given engrgy
gl W ~ |Fr(E)/w|, is significantly larger than the minimal num-

i ) ) ' ber of superposed Gaussians needed to produce the observed
free energy derivatives: F'(E)/(w/AEFE). In this work we
FIG. 1: Example of reconstruction of a preassigned (ariftee- have required that the ratio of the former to the latter baigre
energy profile (black curve)F(E), by means of metadynamics than 5.
runs consisting of 200 Gaussians of spréaf = 0.4 and height We now use the algorithm described above to compute
w = 0.16. To mimic the uncertainty on the thermodynamic force D(FE) for an NxN two-dimensional Ising model with ferro-
encountered in stochastic simulations, a G.a.US.Sian.nomtﬁ 0.3 magnetic nearest_neighbour interactions and periodin@ou
was added to”(E). The broken red and indigo lines denote the 4y conditions[[1l1]. In fact, exact expressions for S(E) are
filled profile, 0F'( ) = F'(E) — Fr(E), obtained respectively with available[12] and the error induced by the algorithm can be

an unsmoothedr, = 0) and smoothed7. = 100) metadynam- . . . .
ics. Notice the shorter correlation lengths and smallerlanges ~ ©XPlicitly estimated and comparison with other approaches

of the fluctuations in the second case. The average and sisper Can be madg[6].
of 6F(E) were calculated (blue and brown lines wth error bars) Virtually the entire computational effort of the metadynam
for 1000 independent runs, revealing both the absence sébilm s s spent in estimating the thermodynamic for8ds/ O E
Fr(E) and the constancy of the error except close to the boundaries,; aach energy valugg, visited by the metadynamics. To
By changingw and modifying the number of Gaussians so as to WorkreS ect the discrete na'lture of the svstem’s enerav spectrum
at a constant filled free-energy volume, we calculated dwverange P . : y 9y pe,.
|E| < 2.5 the average, maximum and minimum valuessaf(£) e continuous value ofs" produced by eq. [12) was dis-
measured over 1000 runs, see inset. The linear dependertice of Cretized to the nearest energy level. Due to the discresenes
error onF' is thus apparent both for the unsmoothed and smoothe®f the energy spectrum, the thermodynamic forc&'icannot
metadynamics (red and blue respectively). be estimated by the Lagrange-multipliers technique desdri
in Ref.[10], and is rather obtained using a centred diffeeen

Finally, in order to further reduce the spatial correlasion approach. Ifp; andp, are the occupation probabilities of

in Fz, we notice that when the metadynamics is terminatedthe two energy levelst; and E> adjacent tol) (we assume
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14—

Error

- Ol,




|E — Ey| = |E — E3|), we have: 0 T
-200 | 1
8F| T .z @ 400 1 S
SEIE=E = [y Mo 600 | —-s®
OFE B=r (E2 - El) P2 600 / JE— Si(é) AN

p1 andpy are evaluated with an umbrella-sampling strategy
consisting of a Monte Carlo evolution of the system (Metropo 08
lis acceptance/rejection of single-spin flips) under thigac
of an effective Hamiltonian obtained by adding to the energy
of a given spin configurationt, the term1/2 K(E — E)2.
A suitable choice of the parametéf forces the system to
explore the energy region arourdd thus populating appre-
ciably both levelsk; and E>;. The symmetry with respect
to E of the added umbrella potential allows to calculate the
thermodynamic force through the same dq. 4 withand 2 w
p2 being the fraction of times that the corresponding energy
levels are encountered instatistically independent configu-
rations picked with the modified canonical weight. For this 15
purpose the Monte Carlo trajectory was sampled at intervals
comparable to the autocorrelation time after having dibear
a few tens of initial system sweeps. The MC sampling was
stopped when the estimated uncertainty on the farde [13] was
equal to the maximum force introduced by a single Gaussian,
w exp(—1/2)/AE. This choice ensures that, for large values
of t, f(E) is of the order ofw/AE. If the force is calculated
with much greater accuracy the repeated superpositioreof th

. . . — Reconstructed
Gaussians would still lead to an uncertainty of ordg¢ AE - - Exact
on f(E). % 2 4 6 8 10 12 14

By means of such a metadynamics it is therefore possi- T
ple to reconstruct the free energy proﬁ[ég(E, T). An es- FIG. 2: Results from the metadynamics runs carried out 08282
timator for the system ent.ropy IS given %(E) :.[E N Ising system. Top: the exact };nd reconstructed entropiedoth
Fr(E,T)]/T. The uncertainty oveF(E, T) isinherited by cases the entropy has been normalised soXRatexp[S(E)] = 1.
Sr(E) whosea priori dispersion is thus of the order/T.  The abscissa indicates the energy per spin. Middle: Difiezeoe-
Thus, the expected error on the entropy profile is constantween the true and reconstructed entropy. The dispersioecteda
This represents a major difference over standard reweighti priori on the reconstructed entropy is shown with ared line. Battom
techniques, where the accuracy on the calculated entrapy usthe exact and reconstructed specific heat and average efiesgs)
ally deteriorates as one moves away from the free energy mirS @ function of temperature.
ima.
If the goal is to reconstruci(E) over a wide range of en-

ergy, it seems natural to combine the outcome of severaltmeta ~
dynamics at various temperatures, in analogy with mukHiple £(§ Cryocn) = Z |S(E) — Sr,i(E) — ¢i|? )
histogram techniques([2]. In the following we shall indieat Tt €2
with S ; the entropy reconstructed in thigh metadynamics E
carried out at temperatufg; and with Gaussians of height where the first sum is carried over the various metadynamics
w; and widthd;. Due to the temperature-dependence of theuns and the second one runs over the system (discrete) en-
free energy, each run will typically explore a differentegye  ergy levels with the proviso that is equal to infinity outside
range. The data obtained in the different metadynamics runge reliable energy range. The determinatio’s 6F) through
can be optimally combined to provide a single entropy estithe minimization ofZ relies on the statistical independence of
mate,S, over the union of the explored regions[2]. To do soeach term in the sum of equatidn (5). This is realized only ap-
we recall that the entrop§r,; is known only up to an addi- proximately due to the existence of an intrinsic scale obaut
tive constant; and that the uncertainty %% ; ise; = w;/T;  correlation for the reconstructed free-energy/entropiedéd
throughout the reliably-explored energy range. by the correlation lenght of the metadynamics. Thereftwe, t
This leads us naturally to consider a maximum likelihood ap-minimization of [3) is meaningful provided that each energy
proach to obtairt and the additive constants by minimizing value is covered by several metadynamics runs, each explor-
the least-squares function, ing an interval substantially larger than the Gaussianhgidt
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The requirement of stationarity fol leads to self- allows an accurate and efficient recovery of a system entropy
consistent equations which can be solved iteratively imger it is certainly susceptible to further generalizations @md
of the ¢;’s and S(E). Despite the presence of the ad- provements. In particular, in order to improve the resohuti
ditive terms, ¢;’s, which distinguish the present juxtaposi- the height and/or width of the Gaussians may be changed as
tion scheme from others already available, the self-ctersis the metadynamics progresses, in analogy with the method of
equations are simple both in their formulation and numeri+ef. |6]. The application of the method to first order phase
cal implementation. Convergence to the solutions is tyflyica transitions is conceptually straightforward althoughpmac-
reached in a few tens of iterations. The least-squares appro tice, the elimination of hysteretic effects in the metadyna

also allows the expected standard deviatio§ @) to be cal-  ics may prove computationally expensive. However, these ef
culated: fects could be eliminated by exploiting the ability of metad
~ namics to sample multidimensional free energy surfacs[10
a(S(E) 2= > a(B)2. (6)  Supplementing? with auxiliary order parameters suitable for
i=l..n characterizing the transition should facilitate the oeening

The use of the reconstruction strategy is first illustrated f of the free energy barriers_as_sociated with the nucleat_fon 0
the 32x32 Ising model, see Fig. 2. The curve for the entrop%he new phase and thus elllmlnate/reduce the hystere5|s. The
Fig. [, results from the combination of runs at six temloera_progress made here constitutes a substantial mpro_vennentt
tures,T = 2, 2.6, 3.0, 3.4, 6.0 and 12.0. At each temperaturd€ accuracy of the metadynamics approach and illustrates
1000 Gaussians where used WithT ~ 0.5, AE ~ 0.04, its relation to_ oth_er very powerful methods like muItlpIeshl

K =~ 0.4 and7, = 300. The total computational effort re- togram rewelght!ngHZ] and Wang af‘d Landau algor|1h_m[6].
quired 7.5 10° MC sweeps. The comparison with the true Given the potential range of appllc_at|0ns of metadynamies w
system entropy reveals thsi{ ) was correctly reconstructed expect that our Worl_< will have an impact far. broader than the
throughout the explored energy range [-1.93; 1.93] (exploi present demonstrative calculation on the Ising model.

ing the ferro/antiferro symmetry) with an uncertainty tieat

approximately constant (its average being 0.17) and ineagre

ment with the one expectaapriori from eq.[®. The corre-

sponding average relative error Si{E’) was 0.05%, similar (1] ¢.H. BennettJ. Comput. Phys22, 245 (1976).

to that obtained with a comparable number of sweeps in the[2] A.M. Ferrenberg and R.W. Swendsd@Hys. Rev. Lett61, 2635

recent and powerful approaches described in refs! [5, 6]. (1988); R.W. SwendseiRhysica A 184, 53 (1993).
Analogous runs were repeated for the 50x50 system using3] P.-M.C. de Oliveira and T.J.P. Penna and H.J. Herm&naz. J.

eters as before. By using 2.2% Monte Carlo sweep$ (E) ” E' f:;gfyssﬁgvptgi?i’ gﬁ gggg;

was reconstructed over the energy range [-1.8,1.8] agdin Wi 51 g A ‘Bergand T. Neuhaughys. Lett. B267, 249 (1991)Phys.
an average error of 0.24, again in agreement with the one ex- * rey, | ett. 68, 9 (1992).
pecteda priori. This confirms that the proposed strategy al- [6] F. Wang and D.P. LandawPhys. Rev. Lett86, 2050 (2001);
lows good control over the final accuracy 8n Phys. Rev. 64, 056101, (2001).

We wish to point out that, in the high-temperature limit, [7] B. Hesselbo, R.B. Stinchcomb&hys. Rev. Lett.74, 2151
our approach has strong analogies with the Wang and Lan- _ (1996)
dau algorithm, in whichD(E) is also modified in a history- 6] Ul.gHésHansmann and Y. Okamotd, Comput. Chem14, 1333
dependent fashion[6] (their “pointwise” modification ofeth ( )

. . . [9] Tesi, M., van Rensburg, E. J., Orlandini, E. & Whitting{cS.
density of states can be viewed as a limiting case of our Gaus- (1996).J. Stat. Phys82, 155-181 (1996).

sians). Asin their case, with one metadynamics run at aesingl[10] A. Laio, M. Parrinello,Proc. Natl. Acad. Sci. USA9, 12562
temperature we could explore the whole energy range. This, (2002); M. lannuzzi, A. Laio & M. Parrinell®hys. Rev. Lett
however, may be inefficient, especially in a realistic model 90, 238302 (2003)
since it could require an impractically large number of Gaus Hg é-g- gg;c:;n;r?jsag%yL%t;ésges?j(]{;égev'lssy 832 (1969).
tsfzzn;(')I\tAzllr;hall?lr?gzaelspgrr?c?ﬁri],sI;fsgﬁgfgiszzlzgéﬁgzlmfe t[13] From the binomial sta}tistics it foIIovys that thg uneenty

. . on the number of hits collected in e.g¢; is o1 =
exploring the_z region of phase_ space of relevance for the tem- wpi(l—p1). Therefore, as a measure of the uncer-
perature of interest. With this respect, our metodology can  (ainty of the thermodynamic force we have taken —
be viewed as a finite temperature extension of the Wang and max|In Lol n Z;j_g;]‘
Landau algorithm.

Although in its present formulation the proposed method
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