
ar
X

iv
:c

on
d-

m
at

/0
40

52
96

v1
  [

co
nd

-m
at

.s
ta

t-
m

ec
h]

  1
3 

M
ay

 2
00

4 Reconstructing the Density of States by History-Dependent Metadynamics

Cristian Micheletti1, Alessandro Laio2 and Michele Parrinello2

(1) International School for Advanced Studies (SISSA) and INFM, Via Beirut 2-4, 34014 Trieste, Italy
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We present a novel method for the calculation of the energy density of statesD(E) for systems described by
classical statistical mechanics. The method builds on an extension of a recently proposed strategy that allows
the free energy profile of a canonical system to be recovered within a pre-assigned accuracy,[A. Laio and M.
Parrinello, PNAS 2002]. The method allows a good control over the error on the recovered system entropy.
This fact is exploited to obtainD(E) more efficiently by combining measurements at different temperatures.
The accuracy and efficiency of the method are tested for the two-dimensional Ising model (up to size 50x50) by
comparison with both exact results and previous studies. This method is a general one and should be applicable
to more realistic model systems.

It has long been recognized that all energy-related ther-
modynamic properties of a classical canonical system can
be calculated once the energy density of statesD(E) is
known. In fact, starting from the partition functionZ =
∫

dE D(E)e−βE , quantities like free energies, specific heats
and phase transition temperatures can be computed in a
straightforward manner. In principle, all canonical aver-
ages can be calculated through a multidimensional density of
states. Due to this central role in equilibrium thermodynam-
ics a variety of theoretical and computations studies have ad-
dressed the problem of how to obtainD(E) (or, equivalently,
the entropy profileS(E) = ln(D(E)) in a reliable and effi-
cient way.

In principle,D(E) could be calculated from the histogram
of the energies visited during a single “very long” constant-
temperature simulation[1]. In practice, for any finite simu-
lation only a limited energy windows is sampled so that the
recovery of the system thermodynamics over a wide tempera-
ture range is unfeasible.

Several alternative strategies have been developed to rem-
edy this shortcoming. For example the multiple histogram
reweighting technique relies on performing several simula-
tions at different temperatures, so as to explore different(over-
lapping) energy intervals [2]. The various histograms are then
optimally combined to obtainD(E) over the union of the en-
ergy intervals. Another successful family of techniques aims
at obtainingD(E) by changing iteratively the probability with
which the various energy levels are visited in stochastic dy-
namics until the recorded energy histogram is “flat”. Such
methods include entropic sampling [4], multicanonical and
broad-histogram techniques techniques [3, 5] and also the re-
cent method of Wang and Landau [6].

These and similar techniques have proved to be very valu-
able in a variety of contexts [7, 8, 9], but there is still ample
scope for alternative approaches that could provide improved
efficiency and better error control. Here we propose to mod-
ify and extend the metadynamics method recently introduced
by two of us [10] for evaluatingD(E). The algorithm we
introduce allows a good error control on the explored energy
range. Moreover, although within our approachD(E) could
be reconstructed performing simulations at virtually any tem-

perature, it is still possible to exploit the Boltzmann biasto
focalize the computational effort for exploring the regionof
phase space of relevance for a temperature of interest (e.g.of
a phase transition). In the following we will first describe this
general strategy followed by its application to the typicalref-
erence case constituted by the two-dimensional Ising model.

The essence of the metadynamics approach is first to iden-
tify those relevant collective variables (CVs) that are difficult
to sample. In other applications[10] a similar metodology
was applied in order to observe a specific transition (e.g. a
chemical reaction) in systems described by a complex atom-
istic Hamiltonian. At this scope CVs explicitly depending on
the microscopic configuration of the system have been em-
ployed, like, e.g., coordination numbers or distances between
specific atoms of the system. Here, we aim at reconstructing
the canonical free-energy profile,F (E) = E − T S(E) and
the relevant variable isE (which is also an explicit function of
the microscopic configuration of the system). At each meta-
dynamics step the system evolution is guided by the gener-
alised force which combines the action of the thermodynamic
force (which would trap the system in free-energy minima)
dF (E)/dE and a history-dependent one which disfavours
system configurations already visited. The history-dependent
potential,FG, is constructed as a sum of Gaussians of width
∆E and heightw centred around each value ofE already ex-
plored during the dynamics. As shown in ref [10],FG fills in
time the minima in the free energy surface and, in the limit of
a long metadynamicsF (E) + FG(E) tends to become flat as
a function ofE and hence−FG(E) becomes an approximant
of F (E).

Clearly, the exact form of the metadynamics equations and
the choice of the parametersw and∆E may affect signifi-
cantly the accuracy of this estimate. Furthermore careful con-
trol of the error is essential for reconstructing a reliableden-
sity of states. This requires that the algorithm in ref. [10]
be substantially improved. The modified metadynamics equa-
tions are:

Et+1
G = Et +∆E

f (Et)

|f (Et)|
(1)
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Et+1 = Et +∆E(1 +
χ

2
)
f (Et)

|f (Et)|
(2)

whereχ is a random number between 0 and 1. The general-
ized forcef(E) is given byf (E) = − ∂

∂E [F (E) + F t
G(E)]

with the history-dependent potential,F t
G, defined as

F t
G (E) =

∑

u≤t

w e−
(E−E

u

G
)2

2∆E2 . (3)

By displacing the center of the GaussianEt+1
G with respect to

the point of evaluation of the generalised force (equation 1),
the added Gaussian maximally compensatesf(Et) and flat-
tensF + FG aroundEt. The energy step performed at ev-
ery metadynamics iteration is chosen randomly in the interval
between∆E and1.5∆E (equation 2) in order to reduce the
correlation induced by the dynamics.
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FIG. 1: Example of reconstruction of a preassigned (analytic) free-
energy profile (black curve),F (E), by means of metadynamics
runs consisting of 200 Gaussians of spread∆E = 0.4 and height
w = 0.16. To mimic the uncertainty on the thermodynamic force
encountered in stochastic simulations, a Gaussian noise ofwidth 0.3
was added toF ′(E). The broken red and indigo lines denote the
filled profile,δF (E) = F (E)− FR(E), obtained respectively with
an unsmoothed (τc = 0) and smoothed (τc = 100) metadynam-
ics. Notice the shorter correlation lengths and smaller amplitudes
of the fluctuations in the second case. The average and dispersion
of δF (E) were calculated (blue and brown lines wth error bars)
for 1000 independent runs, revealing both the absence of biases in
FR(E) and the constancy of the error except close to the boundaries.
By changingw and modifying the number of Gaussians so as to work
at a constant filled free-energy volume, we calculated over the range
|E| < 2.5 the average, maximum and minimum values ofδF (E)
measured over 1000 runs, see inset. The linear dependence ofthe
error onFR is thus apparent both for the unsmoothed and smoothed
metadynamics (red and blue respectively).

Finally, in order to further reduce the spatial correlations
in FG, we notice that when the metadynamics is terminated,

say at positionEt, FG will present a bump in a region around
Et whose spread depends on the correlation time of the meta-
dynamics. This effect can be lessened if the contribution of
the Gaussians placed at the end of the dynamics are weighted
less. Therefore, after the metadynamics with constantw is
terminated we reconstruct the free energy fromFR (E) =

−
∑

u≤t w tanh
(

t−u
τc

)

e−
(E−E

u)2

2∆E2 where τc is taken to be

larger than the typical time required to sweep the “filled” en-
ergy range. Other smoothing functions, such asmin(1, t−u

τc
)

can, of course, also be chosen and have an analogous effect.
The modified metadynamics algorithm allows the efficient

reconstruction ofF (E) in the explored energy range, within
an error that is ultimately controlled only by the Gaussian’s
heightw. We demonstrate the quality of the algorithm by re-
constructing an “ideal”, pre-assigned,F (E) (see Fig. 1). If
the method is void of systematic biases one would expect the
quantityδF (E) ≡ FR (E) − F (E) to be, on average, con-
stant throughout the filled energy range. Moreover, we would
expect deviations from the constant average value to be of the
order ofw. These properties are confirmed by the results pre-
sented in the inset of Fig. 1, where the uniformity of the aver-
age value ofδF (E) is apparent, together with the constancy
of its dispersion,σ2 (E) = 〈δF (E)

2
〉−〈δF (E)〉2. The plots

also illustrate the benefits of the “smoothing” procedure over
the last part of the metadynamics trajectory, since this results
in a decrease of the spread ofδF (E). As is visible in the inset
of Fig. 1, the dispersion is further confirmed to be approxi-
mately proportional tow. An important fact is that near the
boundaries of the explored energy intervalFR(E) decays to
zero and hence deviates from the true free energy. To identify
the interval over whichFR is reliable we need to ascertain if
the number of Gaussians accumulated at a given energyE,
≈ |FR(E)/w|, is significantly larger than the minimal num-
ber of superposed Gaussians needed to produce the observed
free energy derivative,≈ F ′(E)/(w/∆E). In this work we
have required that the ratio of the former to the latter be greater
than 5.

We now use the algorithm described above to compute
D(E) for anNxN two-dimensional Ising model with ferro-
magnetic nearest-neighbour interactions and periodic bound-
ary conditions [11]. In fact, exact expressions for S(E) are
available[12] and the error induced by the algorithm can be
explicitly estimated and comparison with other approaches
can be made[6].

Virtually the entire computational effort of the metadynam-
ics is spent in estimating the thermodynamic forces∂F/∂E
at each energy value,̄E, visited by the metadynamics. To
respect the discrete nature of the system’s energy spectrum,
the continuous value ofEt produced by eq. (2) was dis-
cretized to the nearest energy level. Due to the discreteness
of the energy spectrum, the thermodynamic force inĒ cannot
be estimated by the Lagrange-multipliers technique described
in Ref.[10], and is rather obtained using a centred difference
approach. Ifp1 and p2 are the occupation probabilities of
the two energy levels,E1 andE2 adjacent toĒ (we assume
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|Ē − E1| = |Ē − E2|), we have:

∂F

∂E
|E=Ē =

T

(E2 − E1)
ln

p1
p2

. (4)

p1 andp2 are evaluated with an umbrella-sampling strategy
consisting of a Monte Carlo evolution of the system (Metropo-
lis acceptance/rejection of single-spin flips) under the action
of an effective Hamiltonian obtained by adding to the energy
of a given spin configuration,E, the term1/2K(E − Ē)2.
A suitable choice of the parameterK forces the system to
explore the energy region around̄E thus populating appre-
ciably both levelsE1 andE2. The symmetry with respect
to Ē of the added umbrella potential allows to calculate the
thermodynamic force through the same eq. 4 withp1 and
p2 being the fraction of times that the corresponding energy
levels are encountered inn statistically independent configu-
rations picked with the modified canonical weight. For this
purpose the Monte Carlo trajectory was sampled at intervals
comparable to the autocorrelation time after having discarded
a few tens of initial system sweeps. The MC sampling was
stopped when the estimated uncertainty on the force [13] was
equal to the maximum force introduced by a single Gaussian,
w exp(−1/2)/∆E. This choice ensures that, for large values
of t, f(Ē) is of the order ofw/∆E. If the force is calculated
with much greater accuracy the repeated superposition of the
Gaussians would still lead to an uncertainty of orderw/∆E
onf(Ē).

By means of such a metadynamics it is therefore possi-
ble to reconstruct the free energy profile,FR(E, T ). An es-
timator for the system entropy is given bySR(E) = [E −
FR(E, T )]/T . The uncertainty overFR(E, T ) is inherited by
SR(E) whosea priori dispersion is thus of the orderw/T .
Thus, the expected error on the entropy profile is constant.
This represents a major difference over standard reweighting
techniques, where the accuracy on the calculated entropy usu-
ally deteriorates as one moves away from the free energy min-
ima.

If the goal is to reconstructS(E) over a wide range of en-
ergy, it seems natural to combine the outcome of several meta-
dynamics at various temperatures, in analogy with multiple-
histogram techniques[2]. In the following we shall indicate
with SR,i the entropy reconstructed in theith metadynamics
carried out at temperatureTi and with Gaussians of height
wi and widthδi. Due to the temperature-dependence of the
free energy, each run will typically explore a different energy
range. The data obtained in the different metadynamics runs
can be optimally combined to provide a single entropy esti-
mate,S̃, over the union of the explored regions[2]. To do so
we recall that the entropySR,i is known only up to an addi-
tive constantci and that the uncertainty onSR,i is ǫi = wi/Ti

throughout the reliably-explored energy range.
This leads us naturally to consider a maximum likelihood ap-
proach to obtaiñS and the additive constants by minimizing
the least-squares function,
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FIG. 2: Results from the metadynamics runs carried out on the32x32
Ising system. Top: the exact and reconstructed entropies. In both
cases the entropy has been normalised so that

∑

E
exp[S(E)] = 1.

The abscissa indicates the energy per spin. Middle: Difference be-
tween the true and reconstructed entropy. The dispersion expecteda
priori on the reconstructed entropy is shown with a red line. Bottom:
the exact and reconstructed specific heat and average energy(inset)
as a function of temperature.

L(S̃, c1, ...cn) =
∑

i=1,n

∑

E

|S̃(E)− SR,i(E)− ci|
2

ǫ2i
(5)

where the first sum is carried over the various metadynamics
runs and the second one runs over the system (discrete) en-
ergy levels with the proviso thatǫi is equal to infinity outside
the reliable energy range. The determination ofS̃(E) through
the minimization ofL relies on the statistical independence of
each term in the sum of equation (5). This is realized only ap-
proximately due to the existence of an intrinsic scale of auto-
correlation for the reconstructed free-energy/entropy dictated
by the correlation lenght of the metadynamics. Therefore, the
minimization of (5) is meaningful provided that each energy
value is covered by several metadynamics runs, each explor-
ing an interval substantially larger than the Gaussian widths.
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The requirement of stationarity forL leads to self-
consistent equations which can be solved iteratively in terms
of the ci’s and S̃(E). Despite the presence of the ad-
ditive terms, ci’s, which distinguish the present juxtaposi-
tion scheme from others already available, the self-consistent
equations are simple both in their formulation and numeri-
cal implementation. Convergence to the solutions is typically
reached in a few tens of iterations. The least-squares approach
also allows the expected standard deviation ofS̃(E) to be cal-
culated:

σ(S̃(E))−1/2 =
∑

i=1..n

ǫi(E)−2 . (6)

The use of the reconstruction strategy is first illustrated for
the 32x32 Ising model, see Fig. 2. The curve for the entropy,
Fig. 2, results from the combination of runs at six tempera-
tures,T = 2, 2.6, 3.0, 3.4, 6.0 and 12.0. At each temperature
1000 Gaussians where used withw/T ≈ 0.5, ∆E ≈ 0.04,
K ≈ 0.4 andτc = 300. The total computational effort re-
quired 7.5 105 MC sweeps. The comparison with the true
system entropy reveals thatS(E) was correctly reconstructed
throughout the explored energy range [-1.93; 1.93] (exploit-
ing the ferro/antiferro symmetry) with an uncertainty thatis
approximately constant (its average being 0.17) and in agree-
ment with the one expecteda priori from eq. 6. The corre-
sponding average relative error onS(E) was 0.05%, similar
to that obtained with a comparable number of sweeps in the
recent and powerful approaches described in refs. [5, 6].

Analogous runs were repeated for the 50x50 system using
three temperatures,T = 2.6, 4 and12 and the same param-
eters as before. By using 2.2106 Monte Carlo sweepsS(E)
was reconstructed over the energy range [-1.8,1.8] again with
an average error of 0.24, again in agreement with the one ex-
pecteda priori. This confirms that the proposed strategy al-
lows good control over the final accuracy onS.

We wish to point out that, in the high-temperature limit,
our approach has strong analogies with the Wang and Lan-
dau algorithm, in whichD(E) is also modified in a history-
dependent fashion[6] (their “pointwise” modification of the
density of states can be viewed as a limiting case of our Gaus-
sians). As in their case, with one metadynamics run at a single
temperature we could explore the whole energy range. This,
however, may be inefficient, especially in a realistic model
since it could require an impractically large number of Gaus-
sians. Within our approach, it is not necessary to renounce to
the Boltzmann bias, and it is possible to focalize the effortfor
exploring the region of phase space of relevance for the tem-
perature of interest. With this respect, our metodology can
be viewed as a finite temperature extension of the Wang and
Landau algorithm.

Although in its present formulation the proposed method

allows an accurate and efficient recovery of a system entropy,
it is certainly susceptible to further generalizations andim-
provements. In particular, in order to improve the resolution,
the height and/or width of the Gaussians may be changed as
the metadynamics progresses, in analogy with the method of
ref. [6]. The application of the method to first order phase
transitions is conceptually straightforward although, inprac-
tice, the elimination of hysteretic effects in the metadynam-
ics may prove computationally expensive. However, these ef-
fects could be eliminated by exploiting the ability of metady-
namics to sample multidimensional free energy surfaces[10].
SupplementingE with auxiliary order parameters suitable for
characterizing the transition should facilitate the overcoming
of the free energy barriers associated with the nucleation of
the new phase and thus eliminate/reduce the hysteresis. The
progress made here constitutes a substantial improvement to
the accuracy of the metadynamics approach and illustrates
its relation to other very powerful methods like multiple his-
togram reweighting[2] and Wang and Landau algorithm[6].
Given the potential range of applications of metadynamics we
expect that our work will have an impact far broader than the
present demonstrative calculation on the Ising model.

[1] C.H. Bennett,J. Comput. Phys., 22, 245 (1976).
[2] A.M. Ferrenberg and R.W. Swendsen,Phys. Rev. Lett., 61, 2635

(1988); R.W. Swendsen,Physica A, 184, 53 (1993).
[3] P.M.C. de Oliveira and T.J.P. Penna and H.J. Hermann,Braz. J.

Phys.,26, 677 (1996); A. R. Lima, P.M.C. de Oliveira and T.J.
P. Penna,J. Stat. Phys., 99, 691 (2000).

[4] J. Lee,Phys. Rev. Lett., 71, 211 (1993).
[5] B.A. Berg and T. Neuhaus,Phys. Lett. B, 267, 249 (1991);Phys.

Rev. Lett., 68, 9 (1992).
[6] F. Wang and D.P. Landau,Phys. Rev. Lett, 86, 2050 (2001);

Phys. Rev. E, 64, 056101, (2001).
[7] B. Hesselbo, R.B. Stinchcombe,Phys. Rev. Lett., 74, 2151

(1996)
[8] U.H. Hansmann and Y. Okamoto,J. Comput. Chem., 14, 1333

(1993)
[9] Tesi, M., van Rensburg, E. J., Orlandini, E. & Whittington, S.

(1996).J. Stat. Phys.82, 155–181 (1996).
[10] A. Laio, M. Parrinello,Proc. Natl. Acad. Sci. USA, 99, 12562

(2002); M. Iannuzzi, A. Laio & M. ParrinelloPhys. Rev. Lett,
90, 238302 (2003)

[11] A.E. Ferdinand and M.E. Fisher,Phys. Rev., 185, 832 (1969).
[12] P.D. Beale,Phys. Rev. Lett.76, 78 (1996).
[13] From the binomial statistics it follows that the uncertainty

on the number of hits collected in e.g.E1 is σ1 =
√

n p1(1− p1). Therefore, as a measure of the uncer-
tainty of the thermodynamic force we have takenσ =

T

(E2−E1)
max[ln p1−σ1

p2+σ2
, ln p1+σ1

p2−σ2
].


