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Abstract

We address the relation between long range correlations and charge transfer

efficiency in aperiodic artificial or genomic DNA sequences. Coherent charge

transfer through the HOMO states of the guanine nucleotide is studied using

the transmission approach, and focus is made on how the sequence-dependent

backscattering profile can be inferred from correlations between base pairs.
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During the past few years, the nature of long range correlations in DNA sequences has

been the subject of intense debate [1–3]. Scale invariant properties in complex genomic

sequences with thousands of nucleotides have been investigated in particular with wavelet

analysis [2], and have been argued to play crucial role in gene regulation and cell division. Be-

sides, amongst the many physical, chemical or biological phenomena that might be inferred

from sequence correlations, charge transfer properties deserve particular concern. Indeed, a

precise understanding of DNA-mediated charge migration would have strong impact on the

description of damage recognition process and protein binding, or in engineering biological

processes [4,5]. The π-stacked array of DNA base pairs (bp) (made up from nucleotides:

guanine g, adenine a, cytosine c, thymine t) provides an extended path to convey long range

charge transport although dynamical motions of base pairs, or energetic sequence dependent

heterogeneities, are expected to reduce long range efficiency. Photoexcitation experiments

have unveiled that charge excitations can be transmitted between metallointercalators, pref-

erentially through the guanine highest occupied molecular orbitals (g-HOMO) of the DNA

bridge [5,6]. Such experiments and mesoscopic transport measurements on single artificial

or genomic DNA sequences contacted in between metallic electrodes have also been the

subject of intense and controversial debate [7]. While accurate determination of absolute

values of conductivity is important, characteristic sequence dependences of charge transport

could provide valuable clues to mechanisms and biological functions of transport. Such issue

has been up to now poorly addressed experimentally and theoretically. In that perspective,

the possible role of long range correlations on electronic delocalization has been recently

anticipated [8]. In this Letter, the electronic transport properties are proven to be critically

related to the nature and range of correlations.

Rescaling coefficients have been introduced as a useful measure of correlations in DNA

sequences [1]. It relies on the evaluation of the second moment of the fluctuations of sequence

composition. The statistical method consists on constructing a mapping of the nucleotide

sequence onto a walk. A DNA walk is initiated from the first to the last nucleotide of the

sequence with the rule that the walker steps down [v(i) = −1] if a purine (a , g) occurs at
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position i along the sequence, whereas the walker steps up [v(i) = +1] if a pyrimidine (t , c)

occurs at position i. Given a nucleotide sequence of size N , the net displacement x(n) of

the nucleotide walker after n steps is, x(n) =
∑n

i=1 v(i) ; 1 ≤ n ≤ N . Recently, Hurst’s

analysis [9] was argued to be more reliable for determining the precise rescaling coefficients

[10]. We thus follow the prescription of Hurst’s analysis to construct adjusted variables as

X(m, k) = ∆x(m, k)− k
n
∆x(m,n) ; 1 ≤ k ≤ n and define the range S(m,n) for random

walks of lengths n as S(m,n) = max1≤k≤n [X(m, k)]−min1≤k≤n [X(m, k)]. Now, the rescaled

range function R(n) is defined as [9],

R(n) =
〈S(n)〉
σ(n)

∝ nH (1)

where 〈S(n)〉 = ∑N−n
m=1 S(m,n)/(N−n) and σ2(n) is the standard deviation of v(i) over walks

of lengths n, and averaged over the entire sequence. The Hurst exponent H of the process is

then defined through the scaling in Eq.(1). Interestingly, for short-ranged correlated random

walk the exact result for the rescaled range function reads, R(n) =
√

[πn/2]−1 [9,11]. Thus,

H = 1/2 for the ordinary Brownian motion. The existence of power-law behaviors suggests

that there is no characteristic length scale associated with properties under consideration.

It is clear at the first glance that DNA sequences are unlikely fully characterized by a single

scaling exponent. One expects that the scaling behavior be different for different length

scales of the sequence, i.e, the rescaling exponent is itself a function of the length scale n. In

the case where a characteristic size nc can be defined, one may postulate that R(n) is still

described by the power-law in Eq.(1), but with a scale dependent rescaling exponents H(n)

such that H(n) = H1 for 1 ≤ n < nc and H(n) = H2 for n ≥ nc.

In our study, we consider three sequences: a DNA sequence of the first completely

sequenced human chromosome 22 (Ch22) containing about 33.4 × 106 nucleotides enti-

tled NT011520 retrieved from the National Center for Biothechnology Information (NCBI),

a Random DNA sequence (where a , c , t , g are evenly chosen probability 1/4) and a

Fibonacci Polygc quasiperiodic sequence constructed starting from a g-nucleotide as

seed and following the inflation rule g → gc and c → g. This gives successively
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g , gc , gcg , gcggc , gcggcgcg , gcggcgcggcggc , · · ·, for sequences of length 1, 2, 3, 5, 8, 13,

· · ·, respectively, such that its characteristic self-similar order introduces correlations on

broad scale range. The ratio [number of g]/[number of c] approaches the golden mean value

(1 +
√
5)/2 ≃ 1.618 in the limit of an infinite sequence. The Random and Fibonacci se-

quences are used as prototypes of short-range (or uncorrelated) and strongly correlated

systems, respectively.

The computed functions R(n) for the three sequences described above are reported on

Fig. 1 and values of H are summarized in Table I. It clearly appears from these calculations

that the Random sequence is indeed uncorrelated following the
√

[πn/2]-law, whereas Fi-

bonacci sequence is strongly correlated with a ”ballistic behavior” and correlations in Ch22

sequence exhibit a power-law behavior with a scaling exponent depending on the length

scale. The Ch22 sequence has long-range correlations characterized by Hurst exponents

greater than 1/2 (see Table I). Given the huge amount of nucleotides of the Ch22 sequence,

the physically relevant question seems rather to address to which extent charge transport can

be efficient through the g-HOMO, in comparison with uncorrelated random or quasiperiodic

sequences. To have some elements of response, we now turn to the examination of charge

transfer properties in these sequences. To this end, we consider an effective tight-binding

Hamiltonian describing the energetics of a hole located at nucleotide site n [13,14],

H =
∑

n

εnc
†
ncn −

∑

n

t0(c
†
ncn+1 + h.c.) (2)

where c†n (cn) is the creation (annihilation) operator of a hole at site n. The hole site energies

εn are chosen according to the ionization potentials of respective bases [14], εa = 8.24eV ,

εt = 9.14eV , εc = 8.87eV , and εg = 7.75eV , while the hopping integral, simulating the

π − π-stacking between adjacent nucleotides, is taken as t0 = 1eV . The DNA sequences

are further assumed to be connected to two semi-infinite electrodes whose energies εm are

adjusted to simulate a resonance with the g-HOMO energy level, εm = εg, and with hopping

integrals such that tm = t0. Note that ab-initio studies suggest that t0 ∼ 0.1 − 0.4eV

[14], but the choice tm/t0 = 1 reduces backscattering of holes at the contact electrodes
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and allows for a larger accessible transmission spectrum and a better characterization of

DNA’s intrinsic conduction [13]. Sites comprised between [−∞, 0] ∪ [N + 1,+∞] belong to

the leads, whereas sites i = 1, N are associated to the sequence of size N under study. The

transmission coefficients are computed using the transfer matrix formalism in which the time

independent Schrödinger equation is projected into a localized basis by properly accounting

for the boundary conditions [15]. Let ψn denotes the wavefunction with energy E at site n, we

obtain from Eq.(2) the recurrent equation,









ψN+2

ψN+1









= MN









ψN+1

ψN









= MN · · ·M1









ψ1

ψ0









,

where Mn is a 2 × 2 matrix with elements Mn(1, 1) = (E − εn)/tn+1, Mn(1, 2) = −tn/tn+1,

Mn(2, 1) = 1 and Mn(2, 2) = 0. The transmission coefficient TN(E), that gives the fraction

of tunneling electrons transmitted through the N-site DNA, is related to the Landauer

resistance as (h/2e2)[1− TN (E)]/TN(E), where h/2e
2 is the quantum resistance and [15],

TN (E) =

[

4− (E − εm)2

t2m

]/{

−(E − εm)2

t2m
(P12P21 + 1)

+
(E − εm)

tm
(P11 − P22)(P12 − P21) +

∑

i,j=1,2

P2
ij + 2







(3)

with P = MNMN−1....M1. For a given energy, TN (E) reflects the level of backscattering

events in the hole transport through the sequence. As metallic leads are adjusted to the g-

HOMO energy level, the hole transport will experience a sequence dependent contribution of

backscattering according to the distribution of c, t, and a potential barriers over the length

scale of the sequence. To compare transmission properties of different chains, the behavior

of the Lyapunov coefficient, γN(E) = 1

2N
ln(TN (E)), is also calculated. γN(E) has been

extensively investigated to sort out the main features of complex localization patterns [16,17].

For systems with uncorrelated disorder, γN(E) provides the localization length ξ(E) =

1/[limN→∞ γN(E)]. In presence of scale invariance properties, the underlying structure of

γN(E) reflects the self-similarity of the spectrum [17].

Following our analysis on correlations, the TN(E) for the three sequences of Table I have

been computed, varying the sequence length. The random and Fibonacci quasiperiodic

based sequences are generated starting from the first nucleotide of the sequence up to N bp,

5



while the Ch22-based sequences are constructed by starting from the bp=15000 of the full

Ch22 sequence and then extracting the first N bp, namely agggcatcgctaacgaggtcgccgtccaca

gcatcgctatcgaggacaccacaccgtcca for N = 60 bp. Figures 2 and 3 present the comparison

of TN(E) between the quasiperiodic and Ch22 sequences and between uncorrelated random

DNA and Ch22 sequences, respectively, with the same number of bp. Lyapunov coefficients

for quasiperiodic and Ch22-based sequences are also displayed in Fig. 4.

General trends of Figs. 2 and 3 are that TN(E) is characterized by an energy spectrum

of resonant peaks with high transmission. As the sequence length increases, much less

states will present good transmittivity, due to the progressive fragmentation of the spectrum,

although several peaks with high transmission remain at certain energy values, and new ones

may appear. For Fibonacci and Ch22-based sequences, these resonant energies are robust

enough to persist against backscattering effects due to interspersed bases along the sequence.

This point is illustrated in Fig.2 and Fig.3 where one observes that Fibonacci (resp. Ch22-

based sequences) of 180 bp (resp.360 bp) exhibit states with better transmission properties

than those present in a 60 bp (resp. 300bp) long sequence. In addition, γN(E) shown in

Fig. 4 illustrates intrinsic properties of the two correlated sequences albeit of different nature.

Indeed, the series of main elliptic bumps found in the Fibonacci sequence with 60 bp are

reproduced in the 480 bp sequence, which present additional features associated with the

partitioning of spectrum. While self-similarity fully characterizes the quasiperiodic sequence,

the scaling properties in Ch22 rely on totally different kind of long range correlations, with

no hints of self-similar patterns.

In contrast, the fragmentation of the spectrum strongly affects the transmittivity of the

uncorrelated random sequence. All resonant states (when any) are evenly affected and the

corresponding transmission decreases as the sequence length gets longer. From a statistical

analysis over many random sequences, it clearly appears that Ch22-based sequences ex-

hibit much higher charge transfer efficiency over much longer distances in comparison with

uncorrelated random sequences.

Nevertheless, to improve our understanding and gain some physical insights about char-
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acteristic features exhibited by these sequences, we now focus on quasiperiodic sequences

since it has been shown that the global structure of the electronic spectrum of such chains

can be obtained in practice by considering very short periodic approximants to infinite

quasiperiodic chains [17]. These sequences are characterized by long range correlations that

manifest themselves on electronic properties in terms of power-law localization of eigen-

states in the thermodynamic limit or power-law increase of Landauer resistance in finite

samples [17]. For this purpose, we consider a periodic approximant whose unit cell is

gcggc. The corresponding dispersion relation of this approximant is given by, 2t50 cos(5q) =

(E − εg)
3 (E − εc)

2− t20 (E − εg) (E − εc) (5E − 4εg − εc)+ t
4
0 (5E − 3εg − 2εc). The energy spec-

trum of the gcggc approximant is composed of three broad bands (of bandwidth ≃ 0.5− 0.6

eV) centered at the energies E2 = 6. 915 eV, E3 = 8.143 eV and E4 = 9. 527 eV, plus two

narrower bands (of bandwidth ≃ 0.25 eV) located at the edges of the spectrum at E1 = 6.191

eV and E5 = 10.213 eV. These analytical results allow us to properly assign the different

resonant peaks appearing in the spectrum of the transmission coefficient (shown in the inset

in Fig. 2) in respect to the four main sub-bands of the spectral window [5.75, 9.75 eV].

States belonging to the broader central bands around E2 = 6.915 eV and E3 = 8.143 eV

turn out to be very robust to the progressive fragmentation of the energy spectrum. Ac-

cordingly, one is tempted to conclude from the simple inspection of Fig. 2 (left frames) that

these states should exhibit good transport properties even in the thermodynamic limit. To

further substantiate such an assertion, we consider in addition the transmission coefficient

corresponding to the gcggc approximant,

TN (E) =

[

1 + q(x, y)U2
N

5
−1

(w)

]−1

(4)

where x = (E−εc)/2t0, y = (E−εg)/2t0, w = 16x2y3−16xy2−4yx2+3y+2x the Un−1(w)

is a Chebyshev polynomial of the second kind, and q(x, y) ≡ A2/(1− y2)+B2 − 1 with A ≡

−24xy3−16x2y2+6xy+2x2+32x2y4+4y4+y2 and B ≡ 32x2y3−8x2y−24xy2+4y3+3y+2x.

The resonance condition then reads, q(x, y)U2
N

5
−1
(w) = 0, while the condition q(x, y) ≡ 0

yields El = 4. 317 eV (which does not belong to the spectrum) and Eu = 10. 158 eV (located
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near the center of the uppermost band, which is not included in our spectral window). On

the other hand, the roots of the Chebyshev polynomial label a full transmission peak series

according to the relationship w = cos(5kπ/N) with k = 0, ..., N . This is illustrated in the

inset of Fig. 2 (top-left) where one observes oscillations in the energy dependence of the

transmission curve for a sequence cgccg with 10 units. By a deeper analysis, we find that

Fibonacci quasiperiodic sequences as long as 160 nm i.e., ∼ 450 bp will still allow for nearly

resonant transmission around two specific energies E2 ≃ 6.9 eV and E3 ≃ 8.1 eV.

In summary when compared with uncorrelated sequences, long range correlations in

aperiodic DNA sequences seem to induce coherent charge transfer over longer length scales.

Such feature has been illustrated in particular in Chromosome 22-based sequences. Given

that the nature of long range correlations differs in coding versus non-coding regions of ge-

nomic DNA [3], one should further elaborate on a more systematic study of charge transport

in genomic DNA.
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TABLES

Sequence N Purines H(nc = 300)

H1 H2

Ch22 182617 91029 0.60 0.75

Random 182617 91118 0.50 0.50

Fibonacci 46368 28657 0.085 0.011

TABLE I. Hurst exponents calculated from data in Fig. 1.
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FIG. 1. Rescaled range function R(n) versus n. Dashed line corresponds to
√

[πn/2] − 1.
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FIG. 2. Transmission coefficient for Fibonacci Polygc quasiperiodic (left frames) and

Ch22-based sequences (right frames). Inset: TN (E) in Eq.(4) for a periodic approximant of length

N = 50 bp.
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