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Rejuvenation and overaging in a colloidal glass under shear
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We report the modifications of the microscopic dynamics of a colloidal glass submitted to shear.
We use multispeckle diffusing wave spectroscopy to monitor the evolution of the spontaneous slow
relaxation processes after the sample have been submitted to various straining. We show that
high shear rejuvenates the system and accelerates its dynamics whereas moderate shear overage the
system. We analyze this phenomena within the frame of the Bouchaud’s trap model.

PACS numbers: 64.70PF, 83.80Hj, 83.10Pp

The physical properties of glassy systems such as su-
percooled liquids, spin glasses, amorphous polymers and
colloidal glasses are well known to evolve slowly with
time. This phenomena is called aging. The out-of-
equilibrium nature of theses systems compels their phys-
ical properties to depend on two times as shown both by
theoretical and experimental studies. The first time is
the age of the system i.e. the time spent in the glassy
phase. The second time is the time elapsed since the mea-
surement started. Consequently, a well controlled history
is a key requirement to obtain reproducible results. The
most common way to control the history as the age of
the system is to quench it from an equilibrium state at
high temperature into an aging state at low temperature.
Since the system is at equilibrium at high temperature,
all the history preceding the quench is erased and a com-
plete rejuvenation of the physical properties is achieved.
For colloidal glasses however, temperature may not be a
practical parameter. Liu and Nagel recently suggested
[1] that shear may act equivalently to temperature for
such materials. Indeed, a high shear proves to be able
to erased the memory for theses systems and thus com-
pletely rejuvenate them [2][3]. In that sense the cessation
of a shear is similar to a temperature quench. Moreover,
different approaches were recently introduced to describe
the coupling between mechanical deformations and aging
phenomenon [4] [5] . However quantitative experiments
are still lacking to determine unambiguously how shear
acts on a microscopic level and how it should be intro-
duced in a mean field model.

In this Letter we report non trivial shear effects on
a dense solution of polybeads. We show that theses ef-
fects can be mimicked by temperature changes in the
Bouchaud’s trap model [6]. Our underlying physical pic-
ture is the following: slow relaxations, of characteristic
time τ , are determined by the structural rearrangements
of the particles. The dynamics slows down with the age
tw of the system as the beads find more and more sta-
ble configurations. τ is thus an increasing function of
tw. Since a shear flow seems to be able to rejuvenate
completely the system, one could imagine that it shuf-
fles the beads arrangements. The resulting configura-
tions could be less stable. The dynamics of rearrange-
ments would be then accelerated and the relaxation time
τ would decrease. Oppositely, one could imagine that

a moderate oscillatory strain is able to help the system
to find more stable, though always non-crystalline, con-
figurations. The dynamics would be then slowed down
and τ would be increased. In order to elucidate the-
ses two contradictory pictures, we experimentally tested
the effect of an oscillating shear strain on the evolution
of the microscopic dynamics of our dense suspension.
The sample is a commercial suspension of polystyrene
spherical beads of diameter 162 nm copoplymerized with
acrilic acid (1%) that creates a charged corona stabiliz-
ing the microspheres. It is concentrated by dialyzisis to
a volume fraction ϕ = 49%. We use Multispeckle Dif-
fusing Wave Spectroscopy (MSDWS) to probe the slow
relaxation dynamics of the system after various strain
histories. MSDWS is an extension of regular DWS, a
technique that measures the average displacement of the
particles through the intensity fluctuations of multiply
scattered light. Whereas DWS performs a time average
of the fluctuations, MSDWS makes a spatial average of
them. It is thus a well suited technique to study slow
transient phenomena such as aging processes. A pre-
cise description of the technique can be found in [7]. It
allows to measure in real time the two times intensity

autocorrelation function g2(tw + t, tw) = 〈I(tw+t)I(tw)〉
〈I(tw)〉2

where tw is the reference time and t the elapsed time
since tw. The average 〈...〉 is spatially performed over the
speckle pattern. This correlation function is a decreasing
function of the number of rearrangements that occurred
between tw and tw + t as demonstrated in [8][9]. Thus,
the principle of the whole experiment is the following:
the suspension is submitted to different shear history de-
tailed below; the modification of its dynamical properties
is recorded after shear cessation. The sample is placed in
a custom-made shear cell consisting in two parallel glass
plates with a variable gap. For all presented experiments,
the gap was set to 1.3 mm. Oscillatory straining was real-
ized by moving the bottom plate thanks to a piezoelectric
device. Shear strain from 30% to 0.04% could be possi-
bly applied at a fixed frequency of 1Hz. The shear cell
was synchronized with the light scattering detection via
a PC. For optical considerations, backscattering geome-
try was used. We confirmed that the suspension did not
slip on the wall by checking that we obtained identical
results for various gap size. Moreover, no macroscopic
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crystallization was observed. All the experiments were
performed at room temperature. In order to increase the
signal to noise ratio, each test presented in this paper was
performed 10 times and each correlation function was av-
eraged over the 10 experiments. The reproducibility was
check to be better than 5%.
We first submit the sample to a series of 40 oscillations

for different strain amplitudes γ. For γ > 20% the mea-
surement after the shear cessation becomes insensitive to
the shear strain amplitude showing that the rejuvenation
is then total. The age tw of the system is defined from the
shear cessation as usually done for temperature quench.
Fig 1a shows the correlation function versus t for different
values of tw.This set of curves displays two important fea-
tures: on the one hand, in the region where t≪ 5.10−2s,
all the curves overlap. The correlation functions show
an initial decrease that is the end of a short time relax-
ation. It corresponds to restricted thermal fluctuations
of the particles and is called β mode. This fast mode
is not affected by shear as predicted by models [5]. On
the other hand, in the long time limit, we observe a slow
decay, known as α relaxation, typical of glasses. This
decay from the pseudo plateau region is all the slower as
the system is elder. It thus means that the average rate
of the structural rearrangements decreases with tw. We
arbitrarily define the structural relaxation time τ1/2for
this regime so that g2(tw + τ1/2, tw) − 1 = 0.06. Fig 1b

shows that τ1/2 ∝ t1.06±0.08
w for tw > 1s. The aging part

of the correlation function can be rescaled with the re-
duced variable 1

1−µ

(

(t+ tw)
1−µ − t1−µ

w

)

with µ = 1.06.

In addition, the shape of the correlation function is in-
variant by such a scaling. This result is a typical feature
of aging process and is qualitatively similar to that found
for rheology of such systems [2][3][10].

FIG. 1: The intensity autocorrelation function g2(tw+t, tw)−
1 for different tw ranging from 0.5 s to 103 s. The first decrease
at short times comes from the tail of the β relaxation. The
long term decrease is due to the structural relaxation. The
insert shows τ1/2 in seconds vs tw. τ1/2 scales as t1.06±0.08

w

In order to better understand the influence of shear on
the dynamics of the particles we apply to the system the

strain history described in fig 2a. The sample is first sub-
mitted to an oscillatory strain of amplitude 30% at 1Hz
during 40 s in order to rejuvenate it totally. Secondly,
we let it age at rest for 10s. Then, a second burst of
1Hz oscillations is applied during td. After its cessation,
we examine how the amplitude γ and the duration td of
the burst have modified the dynamical properties of the
sample. tw is now referenced from the end of the second
burst.

Fig 2b -resp fig 2c- displays the relaxation time τ1/2
as a function of tw for different strain amplitudes, with
td=1s -resp td=100s. Two limit cases can be consid-
ered: that of a complete rejuvenation during the second
burst -corresponding to the reference curve of fig1- and
that of γ = 0% where the system is unperturbed dur-
ing the second burst. That last curve is the same than
the completely rejuvenated one but shifted in time by
ts =10s+td. These two limit curves merge at long time
because of the log scale. For a duration of the second
burst td=1s -fig 2b- we observe that the effect of the
second burst is to rejuvenate partially the system: for
any tw the relaxation time is a monotonically decreas-
ing function of γ. All the curves lie between the two
limit case curves. This is coherent with the idea that the
shear has to be strong enough to rejuvenate totally the
system. However, one might expect that the amplitude
is not the only relevant parameter, but the duration of
the shear application has to play a role. Indeed, if the
system is left longer under shear, the modification of its
dynamic is then dual. When td = 100s -fig 2c-, in the
limit of short tw, the relaxation time behaves similarly
as previously described. However, for longer tw the re-
laxation time after a moderate strain (see e.g. γ = 7%)
is surprisingly longer than the one for the sample with-
out solicitation during the second burst. In other words
moderate shear strain results in a system with a slower
relaxation time. We call this overshoot in the relaxation
time overaging. For large strain amplitudes a total re-
juvenation is recovered as exemplified by the curve for
γ = 11.7% in fig 2c. This experiment demonstrates that
a moderate shear can perturb the dynamical properties
of the system in a non-trivial way.

This is contradictory with the simple idea that strain
or stress simply rejuvenates the system and accelerates
the dynamics. It shows that a transient strain changes
not only the average value of the relaxation time but also
the distribution of relaxation times within the sample.
The change of the distribution is clearly demonstrated
by the crossing of the curves in fig 2c: two similar sys-
tems with the same relaxation time and different histo-
ries can evolve differently. The shape of the correlation
function is also altered by the change in the distribution
of relaxation time as demonstrated in fig 4a. Similar
modifications of the shape of the response function have
already been noticed on spin glasses after a temperature
step - see fig 5 of ref [11] . We remark that microscopic
aging models including shear in their equations tackles
the problem of the modification of the dynamics under
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FIG. 2: a) Strain history. b) τ1/2 for ts = 11s and differ-
ent strain amplitudes γ = 0% (Diamond ), 2.9% (△), 7.9%
(�), 11.7% (O) and the reference curve (� ). τ1/2 decreases
monotonically with the strain amplitude at short times. for
tw ∼ ts all curve merges. c) τ1/2 for ts = 110s for the same
strain amplitude. τ1/2 for γ = 2.9% and 7.9% is superior to
γ = 0% in the long time regime.

shear. To our knowledge, no calculation of the modifica-
tion of the microscopic dynamic after a transient shear
has been performed for theses models. This problem will
be addressed in future work [12].
However, we point out here, the similarity of overaging

after a transient shear stress and that predicted by the
trap model [6] after a temperature step. We thus intro-
duce in this model the oscillatory straining as a change
of temperature. This model describes the motion of non
interacting particles hopping in an energy landscape with
wells of depth E. The distribution of the wells depth ρ(E)
is fixed a priori. P(E,t) is the probability for a particle to
be in a trap of depth E at time t. The evolution of P(E,t)
is simply governed by thermally activated hopping and
writes:

∂P (E, t)

∂t
= −P (E, t)e−E/T + Γ(t)ρ(E) (1)

Where T is the thermal energy and Γ(t) =
∫∞

0 P (E′, t)e−E′/TdE′ is the average hopping rate. The
time unit is set to 1. Following [6], we take ρ(E) =
exp(−E/Tg). For T > Tg, P(E,t) has a stationary limit
P (E, t) ∝ exp[(1/T − 1/Tg)E]. For T < Tg, P(E,t) has
no stationary limit and keeps evolving with time with a
dynamics scaling as t

tw
. We solved numerically equation

FIG. 3: a) Temperature history b) P(E,tw) vs E for various
tw. The (N) curve corresponds to the reference case; the full
line corresponds to the case with a step (∆T= 1

3
Tg). Notice

that 1 tu after the sample is reheated (1) the small energies
are overpopulated, the intermediate ones are depleted and the
large ones remain unchanged. 1 tu after the second quench (2)
both small and large energies are overpopulated. 3000 tu after
the second quench, small energies and intermediate energies
are depleted whereas large energies stay overpopulated.

1 for a quench from T = ∞ to T = 1
2Tg. The energy

distribution is presented in dotted line on fig 3b. As ex-
pected it shifts progressively with time towards deeper
and deeper energy wells. The relaxation time of the sys-
tem become thus longer and longer. In order to mimic the
strain sequence of fig 2, we now solve the model for the
following temperature history: The system is quenched
from infinite temperature to T = 1

2Tg. After a delay
of 100 time units (tu) the temperature T is raised to
T = 1

2Tg + ∆T with ∆T = 1
3Tg, during 300 tu then

quenched back to 1
2Tg. tw is referenced after the second

quench.The solution is plotted in continuous line.
Fig 3b shows that shortly after the system is heated

back (1) the small energies -arrow (a) on fig 3- are over-
populated; intermediate energies (b) are depleted and
high energies (c) remain unperturbed compared to the
reference case where no temperature step is applied. The
system ages then in a higher temperature state. When
the second quench happens (2) both low and high en-
ergies are overpopulated whereas intermediate ones are
depleted. After a while (3) low energies recovered their
reference population whereas high energies stay overpop-
ulated compare to the case without temperature step.
The system has consequently a longer average relaxation
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time. Actually, we do not measure P(E,t) directly but
we probe it experimentally via g1(t + tw, t). The corre-
lation function g1 is a monotonically increasing function
of the probability that a particle has not changed trap
between tw and t + tw. Within the frame of this model
this probability can be written:

C(tw + t, tw) =

∫ ∞

0

P (E, tw) exp[−t.e−E/T ]dE

Fig4(a) shows the change in the shape of the experi-

FIG. 4: a) g2(tw + t, tw) − 1 for tw = 1sfor ∆T = 0 (�)
and for ∆T = 1

3
Tg(△).The insert shows the similar curves

for C(tw + t, tw) calculated at tw = 0.1 tu. Notice that for
∆T = 1

3
Tg the curves first decrease more rapidly ( small en-

ergies overpopulated ) then lies over the reference one (large
energies overpopulated). The agreement is qualitatively ex-
cellent. b) τ1/2 calculated from C(tw+ t, tw) vs tw for various
∆T =0% (bold line ), 1

10
Tg (—-), 1

3
Tg (...), 3

2
Tg (-..-) and

the reference curve (bold line ). Notice the presence of over-
aging in the long time regime. Qualitative agreement with fig
2b is satisfactory.

mental correlation function 1s after the shear cessation.
It compares the case γ = 0 (ref case) with γ = 5.9%.
Notice when a shear has been applied the decay is faster
at short times and becomes more slowly at long times.
The reference curve and the perturbed one can then cross
each other. The insert shows C(tw + t, tw) calculated at
0.1 tu after the temperature step. It compares the case
∆T = 0 (ref case) with ∆T = 1

3Tg. The modification in
P(E,tw) due to the step temperature is reflected in the
change of the correlation shape: the decrease is quicker
at short times (overpopulated low energies) and slower
at long times (overpopulated high energies). We observe
an excellent qualitative agreement between the two set
of curves. This agreement is reinforced by fig 4(b) that
shows the calculated τ1/2 for different ∆T. The calcu-
lated τ1/2 are defined so that C(tw + τ1/2, tw) = 0.5. Fig
4b is qualitatively similar to fig 2c. We point out that
this phenomenon of overaging in the trap model is robust
to parameters changes. The values presented here were
chosen to obtain good looking curves but are not criti-
cal at all. Notice that recent simulations [13] on Edward
Anderson’s model for spin glasses, show qualitatively the
same results for the correlation function with a positive
temperature step. Finally, we emphasize the fact that
the change in the correlation function shape reflects the
change in the relaxation time distribution. We measure
how this distribution is transiently modified by shear.
We expect that it will provide an accurate selectivity on
the models coupling mechanics and thermal aging, but
a more precise analysis with the existent models is be-
yond the scope of this letter. We also point out that the
qualitative agreement with temperature step in the trap
model reinforce the idea that shear and temperature may
play a similar role in certain glassy systems.We thank
J.P.Bouchaud, E.Bertin, C.Caroli, J.Kurchan, L.Berthier
for fruitful discussions. The authors thank M.Dorget for
providing us with the latex beads.
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