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On the Theory of Metal-Insulator Transitions in Gated Semiconductors
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It is shown that recent experiments indicating a metal-insulator transition in 2D electron systems
can be interpreted in terms of a simple model, in which the resistivity is controlled by scattering at
charged hole traps located in the oxide layer. The gate voltage changes the number of charged traps
which results in a sharp change in the resistivity. The observed exponential temperature dependence
of the resistivity in the metallic phase of the transition follows from the temperature dependence
of the trap occupation number. The model naturally describes the experimentally observed scaling
properties of the transition and effects of magnetic and electric fields.

Recently, a metal-insulator transition has been ob-
served in low-density two-dimensional electronic systems
– first in Si MOS structures [1–4], and later in other het-
erostructures [5–9]. It has been found that when the
density of 2D electrons ns is below some critical value
nc
s, cooling causes an increase of the resistivity ρ, while

at ns > nc
s the resistivity decreases with temperature T ,

i.e., the system exhibits an unexpected metallic behavior.
The insulating phase has been found to be rather usual
and easy to describe in terms of variable-range hopping
[10]. On the contrary, the metallic phase is anomalous in
at least three respects: i) the ρ(T) - dependence follows
the exponential, i.e., ρ(T ) = ρ0 + ρ1 exp(−T0/T ) rather
than power-law form; ii) ρ drops by about an order of
magnitude when T changes in the range comparable to
the Fermi energy εF of 2D electrons; iii) the metallic
state is quenched by the magnetic field.
Here, we are not going to discuss existing attempts

[11–18] to interpret these experiments. (We found in
Refs. [11–18] no satisfactory physical explanation of the
substantial drop in the resistivity in a narrow temper-
ature interval in an obviously nonsuperconducting sys-
tem). Instead, we propose a simple mechanism which
seems to naturally explain all the peculiarities mentioned
above. We believe that our general idea can be applied to
all gated semiconductors. However, here we concentrate
on Si MOS structures, where the important character-
istics of a 2DEG and of defects are much better known
than in other systems.
A typical n-Si MOS structure consists of a metallic

gate, SiO2 layer, and p-type Si substrate. Strong enough,
positive gate potential attracts electrons which form an
inversion layer at the SiO2/Si interface. It is known [19]
that due to the oxygen deficit in the oxide, there is a
substantial concentration of defects close to the interface,
which are capable of trapping charges. Even in state-of-
the-art devices, there are more than 1012 hole traps per
cm2, such as Si-Si weak bonds [19]. To introduce the idea
of our mechanism, we assume all of the hole traps to be ⋆)
characterized by the same energy of the electron level εt,

and ⋆⋆) located at the same distance z from the interface.
We shall abandon assumption ⋆⋆) later on. Effects of a
finite width of the trap band will be discussed elsewhere.
At T=0, the trap charge (and spin) state is determined

by the chemical potential µ of the 2DEG. For εt > µ, the
electron level is empty, i.e., a hole is trapped. The trap
has a charge +e and thus causes strong scattering of 2D

electrons. It is crucial for our theory that the charge
state of a trap can be changed by varying the gate volt-
age Vg. Indeed, the bigger Vg the smaller εt = εt(Vg).
At Vg = V ∗

g (z) determined from εt(V
∗

g ) = µ, the trap
captures an electron (i.e. emits a hole) and is neu-
tralized. Being neutral and remote from 2D electrons,
the defect cannot scatter them any more. Neutraliza-
tion of the oxide charges reduces resistivity ρ and thus
causes an insulator-to-metal transition. When T is high
(≫ |εt − µ|), roughly half of the traps are charged. As
a result, ρ is rather high and depends weakly on both T
and Vg. On the contrary, for |µ − εt| ≤ T the density
of charged traps behaves as exp[(εt − µ)/T ], resulting in
the exponential ρ(T )-dependence [feature (i)]. The tran-
sition takes place for both degenerate and nondegenerate
2DEGs [feature (ii)]. Finally, the magnetic field effect
(iii) can be attributed to the spin freeze-out of holes [20]:
Zeeman splitting favors spin 1/2 (charged) state with re-
spect to the singlet (neutral) state of the defect.
It should be noted that we neglect here quantum in-

terference of 2D electrons and thus do not attempt to
describe the insulating phase. However, we will see that
even in the classical case dρ/dT can change sign due to
the µ(T )-dependence.
Let us now abandon assumption ⋆⋆), i.e., take into ac-

count a broad distribution of distances z. In order to
understand why such a distribution does not smear the
transition, we consider the electrostatic energy of an elec-
tron in the oxide εe(z). Given the total oxide thickness
d and its dielectric constant ǫox, εe can be written as

− εe(z) = eVgz/d+ e2/(2ǫoxz). (1)

Here the two terms represent the external electric field
and the image force from the 2DEG, respectively (charges
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induced in the gate can be neglected provided that z ≪
d). εe(z) reaches its maximum εm at z = zm, where

εm = −2
√

eVgεd; zm = d
√

εd/eVg; εd ≡ e2/(2ǫoxd). (2)

zm can also be expressed through the mean distance r̄
between 2D electrons:

zm = r̄/
√
8 = aBrs/

√
8, (3)

where aB ≡ r̄/rs is the effective Bohr radius. Eq.(3) fol-
lows from the relation between the 2DEG concentration
ns = 1/(πr̄2) and the gate voltage: ens = ǫoxVg/(4πd)
[21]. In order to have a meaning in a macroscopic theory,
zm has to exceed the screening radius of 2DEG (equal to
aB/4 for Si (001) surface [22]). Therefore in low-density
devices (rs ≫ 1/

√
2), this length scale is quite legitimate.

Assuming that the double (hole) occupancy of a trap
is impossible, the probability of a trap to be charged is

P+(z) =
[ 1

2C
exp

(µ− εe(z)− εt
T

)

+ 1
]

−1

, (4)

where C = 1. According to Eqs.(1,4), a homogeneous
distribution of traps leads to a distribution of charges
which is peaked at z = zm, the width of the peak being

δz = d
[

T 2εd(eVg)
−3

]1/4

= zm

[

T 2(eVgεd)
−1

]1/4

. (5)

For d = 2000 Å and eVg = 1 eV, we get εd = 1 meV and

εm = 63 meV, so that δz/zm ≃
√

T (K)/18 ≪ 1, since
T ≤ 5K. At T = 5 K, zm ≈ 63 Å and δz ≈ 8 Å. This
sharpness of the distribution peak in Eq.(4) manifests
itself in a sharp metal-insulator transition, as Vg is varied.
How does a positive charge, separated by a distance

z ≫ aB from the 2DEG, affect the resistivity? It
turns out that a bound localized state is formed with
ξ = z3/4a

1/4
B < z and εb = −e2/(ǫ∗z) being the local-

ization length and the energy of this state, respectively
(ǫ∗ is the effective dielectric constant of the 2DEG). The
trap and bound electron form a dipole, which is oriented
perpendicular to the 2DEG plane. For z ∼ aB

√
rs and√

rs ≫ 1, the (transport) scattering cross-section Σ(ε, z)
of such a dipole for electrons with energy ε can be eval-
uated classically:

Σ(ε, z) = 2.74(e2z2/2ǫ∗ε)1/3. (6)

The Drude formula for the resistivity can be written as

ρ = (Nt/e
2ns)

√
2m∗ε̄Σ(ε̄, zm)

∫ d

0

dzP+(z)
( z

zm

)2/3

,

(7)

where Nt is the total volume concentration of the traps,
m∗ is the effective mass of the electrons, and ε̄ has a

meaning of their effective energy, which can be expressed
through the 2DEG Fermi energy εF via

ε̄ = εF

[

∫

∞

0

dε

4T

( ε

εF

)5/6

cosh−2
(ε− εF

2T

)]

−6

. (8)

Eq. (8) interpolates between two limits: ε̄ ≈
T/Γ6(11/6) ≈ 1.44T for T ≫ εF , while in the opposite
limit ε̄ = εF . For T = εF , the effective energy ε̄ ≈ 2T .

FIG. 1. Scaling function R [Eq. (9c)] vs dimensionless tem-
perature t for several dimensionless gate voltages v [Eq. (13)].
v increases in the direction of the arrow. εF/εd = 0.25. (a)
Case A. v = −0.2 . . . 0.7. Ta/εd = 0.04. Dot-and-dashed line
indicates the transition. (b) Case B. v = −1.4 . . . 0.7.

In the saddle-point approximation, Eq.(7) reduces to

ρ = (h/e2)ρ0R(Vg , T ); (9a)

ρ0 = 0.46
√
rs
(

ǫ∗/2ǫox
)1/6

(Ntr̄/πns)(r̄/d)
2/3; (9b)

R(Vg, T ) =
(T 3ε̄

ε4d

)1/6
∫

∞

0

dx

[f(T )/2] exp(x2 + s) + 1
. (9c)

In Eq. (9c), we took into account the µ(T )-dependence:

s =
[

εm − εt + µ(0)
]

/T ; f(T ) = e[µ(T )−µ(0)]/T . (10)
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We have to consider two distinct cases: (A) chemical
potentials of the 2DEG and of the Si substrate coincide;
(B) the 2DEG is disconnected from the substrate. A
straightforward calculation gives

fA(T ) = (T/Ta)
3/4; fB(T ) = 1− exp(−εF /T ) (11)

where Ta is determined by the acceptor concentration
[20]. Although case B is more likely to occur in a real
device [23], we shall concentrate mostly on case A which
exhibits a clear metal-insulator transition even in a clas-
sical model; see below.

FIG. 2. Case A. Scaling function R [Eq. (9c)] vs di-
mensionless gate voltage v for dimensionless temperatures
t = 0.1 . . . 0.6 [Eq. (13)]. t increases in the direction of the
arrow. Inset: a blow-up of the transition region.

The exponential part of the R(T )-dependence disap-
pears when s, Eq. (10), vanishes. This happens at
Vg = V c

g = [εt − µ(0)]2/4eεd and thus V c
g defines the

transition point. The asymptotic behavior of R away
from this point is

RA,B =

(

T 3ε̄

ε4d

)1/6

×
{ √

πΩ, for Ω ≪ 1;

ln1/2 Ω , for Ω ≫ 1.
(12)

where Ω ≡ [2/f(T )]e−s. The distance from the transition
can be measured by δ ≡ (Vg − V c

g )/V
c
g . Provided δ2 ≪

4T 2/(εdeVg), variable s in Eq.(10) acquires a scaling form

s ≈
√

εdeV c
g (δ/T ) ≡ v/t; t ≡ T/εd; v ≡ δ

√

eV c
g /εd. (13)

The R(T )-dependence in the scaling region is shown in
Fig. 1. For v ≫ t, the system is in the “metallic”
phase characterized by RA,B exponentially decreasing
with t. Due to the µ(T )-dependence, dRA/dt changes
sign at some v slightly bigger than zero, exhibiting thus
a metal-to-insulator transition. For larger negative v [not
shown in Fig. 1(a)], the RA(t)-dependence saturates. At
eV c

g = 1 eV, εd = 1 meV, and T = 5 K, we predict

critical behavior for |δ| ≤ 0.01. This is consistent with
experiments [1–4].
In case B, there are two distinct regions: exponentially

decreasing and t-independent RB , the crossover between
the two occuring for |v| ≃ t. Quantum interference effects
should result in localization, converting T -independent ρ
into an exponentially diverging one; the metal-insulator
transition in this case will be discussed elsewhere.
At the transition, RA ≈ 0.1 and RB ≈ 1(cf. Fig. 1).

At the same time, ns ≃ 1011 cm−2 and r̄ ≃ 100 Å for
d = 2 · 10−5 cm and eVg = 1 eV. Estimating Ntr̄ ≃
1012 cm−2 and rs ≃ 10, we obtain for the resistivities at
the transition ρcA ≃ 0.1h/e2 and ρcB ≃ h/e2. These values
are within the experimentally observed range [3]b.
As Fig. 2 shows, the transition between the insulating

and metallic phases in case A is very well-defined, despite
the fact that R does not solely depend on the scaling
variable v/t. Closer inspection of the transition region
(Fig. 2, inset) reveals however that the transition occurs
over a finite range of v rather than at a single point.

FIG. 3. Case A. Data collapse in R plotted vs t/|v|. Inset:
“Duality” between “resistivity” ρ∗ = RA/R

c
A and σ∗ = 1/ρ∗

plotted as a function of δ [Eq. (13)]. Solid downward: ρ∗(δ).
Solid upward: σ∗(δ). Dashed: σ∗(−δ).

Figure 3 depicts the (approximate) data collapse for
R plotted as a function of t/|v| = T/T0 with T0 =
|δ|

√

εdeV c
g . The inset of Fig. 3 demonstrates the “du-

ality” feature, i.e., the symmetry between the resistiv-
ity ρ in the insulating phase and the conductivity σ in
the metallic one. Experimentally, a similar collapse was
achieved for T0 ∝ |δ|a [in the quantum phase transition
theory (QPTT), a = νz]. In all of the experiments, ex-
cept Ref. [8], a is close to 1, i.e. to our prediction.
An additional insight comes from nonohmic measure-

ments. In Ref. [1]c, the dependence of ρ on the source-
drain voltage VSD = EL (where E is the electric field,
and L is the source-drain distance) was also found to be
a scaling one ρ = ρ(E/E0) with E0 ∝ |δ|b. We believe that
this E-dependence can be attributed to simple heating.
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Indeed, the effective temperature of electrons T ∗ is deter-
mined by the energy balance. For strong enough electric
field, i.e, when T ∗ ≫ T , and for 2D electrons,

eE
√

D(T ∗)τeph(T ∗) = (π/
√
6)T ∗. (14)

Here D(T ) is the diffusion constant of electrons at tem-
perature T , and τeph(T ) ∝ T−p is the relaxation time
of the electron temperature, which we assume to be de-
termined by electron-phonon scattering [24]. One can
check that if ρ(T ) and D(T ) obey a scaling law 1/D(T ) ∝
ρ(T ) = F (T/T0), the E-dependence of the resistivity is
also a scaling-like: ρ = G(E/E0), where E0 = Tα

0 ∝ |δ|αa
with α = 1 + p/2, and where function G is obtained by
solving Eq. (14) for given F . If p = 3 (as it is the case for
good metals), α = 2.5. Experimental value of α = b/a
[1] is ≃ 2.25. This discrepancy can easily be explained
by p being smaller than 3. On the other hand, QPTT
predicts α = 1 + z−1, i.e. α=2 at z = 1.
One can check that the strong heating regime is real-

ized under the conditions of Ref. [1]c, if

τeph > 0.1ms/ [E(mV/cm)]
2
. (15)

Strong heating of a 2DEG has recently been observed in
a Si MOSFET device [25] similar in its parameters to
that used in Refs. [1–4]

FIG. 4. Case A. Scaling function R vs temperature t for
Zeeman splittings EZ = (0, 0.04, 0.08, 0.12, 0.16, 0.2)×εd (EZ

increases from the bottom to the top curves). v = 0.1. Inset:
The same as in Fig. 1a but for EZ = 0.15εd.

We now turn to the effect of a magnetic field. Consider
a hole trap, e.g., a Si-Si weak bond [19]. Such a trap can
find itself in one of the three states with energies Ei;
i = 1, 2, 3. For i = 1 two electrons occupy the bond.
This is supposed to be a neutral (Q = 0), singlet (S = 0)
state. State 2 (3) has one spin down (up) electron on the
bond. Accordingly, Q = +1 and S = 1/2 for both states
2 and 3. A magnetic field splits the doublet: E1−E2(3) =
εt ± EZ , where EZ is the Zeeman splitting. As a result,

at given T and Vg probability P+ to find a trap in a
Q = +1 state increases with EZ , i.e., with the magnetic
field: one should substitute C = cosh(EZ/T ) instead
of 1 into Eq.(4). This results in a magnetoresistivity
demonstrated in Fig. 4.
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