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Abstract

We calculate the corrections to the conductivity and compressibility of a

disordered metal when the mean free path is smaller than the screening

length. Such a condition is shown to be realized for low densities and large

disorder. Analysis of the stability of the metallic state reveals a transition

to the insulating state in two-dimensions.
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The discovery of a metal-insulator transition in the two-dimensional electron gas,in a

Si-MOSFET [1,2] and subsequently observed in other systems [3–6], suggests that there

remains much to be understood in this classic problem. The available theory ignoring

interactions predicts an insulating state for any disorder at all densities [7]. The most

systematic theory, including effects of both disorder and interactions, due to Finkelstein

[8], followed the discovery of singularities in the problem by Altshuler and Aronov [9]. It

predicts a metallic state at all densities. The new experiments have also generated much

recent theoretical activity [10].

Finkelstein’s theory has, however, a remarkable prediction with which experiments

are consistent. For a magnetic field coupling to spins an insulating state appears to occur

at all densities at low enough temperature [2].

Finkelstein’s theory is based on the existence of two scaling variables - effective dis-

order, parametrized by the conductance, g and an effective dimensionless spin-spin in-

teraction parameter γt. The reduction to these two parameters is largely based on the

assumption that compressibility must be continuous across a metal-insulator transition.

This ensures that the electron-electron interactions γs in the singlet channel is irrelevant.

Indeed, existing explicit calculations on the metallic side show no singular correction to

the compressibility in leading order in disorder [8,9,11].

Here we seek to add an important physical feature to the theory of interacting disor-

dered fermions so that the modified theory has a metal-insulator transition. It might be

argued that Finkelstein’s theory scales at low temperatures to a metallic state but with

strong coupling in the spin-spin interaction channel where the analysis breaks down.

Could a strong-coupling analysis of the same theory lead to a new low energy scale

below which an insulating state emerges? We believe the experimentally observed metal-

insulator transition is not due to the emergence of a new energy scale primarily because

such a transition is apparent already at temperatures of O(EF). [1–6]

We have been motivated to re-examine the question of the renormalization of the

compressibility by two arguments: First, the metal-insulator transition in the pure limit,

i.e. the Wigner transition. As rs is increased, either in two or three dimensions, a first-

order transition to the Wigner crystal is expected to occur due to the long-range nature
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of the Coulomb interaction even for spin-less electrons. The Wigner transition appears to

satisfy conditions in which disorder turns a first order transition to a continuous transition

[12]. It seems surprising then that the singlet interaction would become irrelevant in

the disordered problem. Second, if the insulating state has unscreened interactions, as

commonly assumed, for instance in the Efros-Shklovskii [13,14] derivation, the screening

length on the metallic side must diverge as the metal-insulator transition is approached.

The screening length is generally proportional to the inverse compressibility, (see Eq. (5)

below).

The correction to the compressibility can be calculated from the correction to the

exchange and correlation contribution to the ground state energy (per unit area) from

the so-called ring-diagrams, with disorder, shown in Fig. (1):

Ering =
i

2

∫

dω
∫

d2qℓn [1 + U(q)π(q, ω)] . (1)

Here U(q) = 2πe2/ǫq in two-dimensions. The proper polarization in the diffusive regime

is

π (q, ω) = ν
Dq2

iω +Dq2
, for q << ℓ−1, ω << τ−1. (2)

For other q and ω which we refer to as the ballistic regime, the polarizability is given

by the generalization of the usual form [15] to include the leading order contribution of

impurity scattering, ω → ω + i/τ where 1/τ is the single-particle scattering rate [16]. In

Eq. (2) D is the diffusion constant, ℓ the mean free path and ν the density of states. The

compressibility at fixed density κ is calculated by κ−1 = d2E/dn2, where n is the density.

First consider the contribution to Ering from the diffusive part. For ℓ >> s0, where

s0 ≡ (2πe2ν/ǫ)−1 is the screening length in the Thomas-Fermi approximation, the lead-

ing contribution to Ering is ∼ D/ℓ4. This yields a non-singular correction to the inverse-

compressibility
(

1
κ

)

∼ (kFℓ)
−3, which decreases the compressibility with increasing dis-

order. For ℓ << s0, the contribution to (Ering) is ∼ D/s40. This is proportional to the

density; so it produces no correction to the compressibility.

Consider next the contribution of the ballistic part. This is similar to the classic

calculation of Gell-Mann and Brueckner [17,18] and others, but with the lower cut-off in
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the q-integral given by ℓ−1. On evaluation, the energy per particle, to the leading order

in disorder, may be written in units of a Rydberg as

Ering = E0
ring − A

s0
ℓ

(3)

Here E0
ring is the contribution for ℓ → ∞, and the constant A ≈ 4/π. The disorder

correction comes mostly from a correction to the zero point energy of the plasmons. The

corresponding additive correction to the inverse compressibility is

(

κo

κ

)

ring
≈ 0.16 r2s

s0
ℓ

(4)

where κo = ν is the contribution to the compressibility of the kinetic energy. Here we

have taken τ to be independent of the density, as is appropriate for the experimental

systems in the immediate vicinity of the metal-insulator transition [19].

The actual screening length s is related to the compressibility through

s/s0 = κ0/κ (5)

Thus the screening length increases as ℓ−1. We look for the condition that s >> ℓ0,

the value of ℓ at temperatures of the order of the Fermi-energy. Eq. (4) provides the

dominant contribution for rs >> 1 and gives the condition

rs & 3 (ωoτ0)
1/2 (6)

where τ0 is the scattering time and ωo = ~/ma2o.

So far we have focused on the ring-diagram contribution to the ground state energy.

The ring diagrams take into account direct processes and are sufficient for small mo-

mentum transfers even when rs is not small. For large momentum transfers, processes

beyond ring diagrams, representing exchange corrections at short distances, become im-

portant. We have calculated the contributions from these additional processes following

the Hubbard interpolation scheme [20], in which the bare Coulomb interaction in the sus-

ceptibility is multiplied by a factor (1− F(q)), where F(q) = q2/2(q2 + k2F). The leading

order disorder correction to the ground state energy is essentially unchanged from that

given in Eq. (3).
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Before we proceed further, a comment on the regime ℓ << s is in order. We are

looking for the transition to an insulator in which κ ∼ s−1 → 0 while ℓ−1 → ∞. This

regime cannot be reached from the opposite limit ℓ >> s, in which we, in common with

others, can find no singular correction to the compressibility, and Finkelstein scaling

holds.

We next consider the problem in a finite box of size L much larger than ℓ(L) (or

equivalently a temperature T = DL−2). For our considerations to be meaningful it is

necessary that ℓ(L) << s(L) for L of order a few times ℓ, i.e condition (6), be satisfied

and remain consistently so as L is increased. To test the latter, we must first calculate

the correction to ℓ as a function of L through the calculation of the conductance g(L).

In calculating the corrections to the conductance we assume that the condition s(L) >>

L >> ℓ(L) is satisfied and check later for its consistency.

In this limit, the bare Coulomb interaction appears in the exchange correction to the

conductivity. Consequently the infra-red singularity in d = 2 (and 3) is stronger than in

the opposite limit. For s << ℓ, the perturbative correction is proportional to ln (L/ℓ),

with a universal (and negative) coefficient [9]. The same processes with unscreened

Coulomb interactions give

δg

g
≃ −21/2

π2
rsL/ℓ, for s >> L >> ℓ . (7)

whose coefficient is rs−dependent. This singular contribution arises from the contribution

of momenta less than ℓ−1 and is related to the diffusion poles.

Next consider the Hartree corrections to the conductivity, which tend to enhance the

conductivity in the limit s << ℓ. The interactions appearing in Hartree-corrections do

not depend on the total momentum of the particle-hole pair carrying the current. They

involve characteristic momenta of O(kF). The only effect of the interactions at small

momentum transfers is to produce a ln(s) enhancement to the triplet amplitude. The

Hartree terms provide the same logarithmic corrections for s >> ℓ as in the opposite

limit, and so may be neglected compared to the contribution of Eq. (7).

We can now check for the consistency of the assumption of unscreened interactions

over the length scale L. The compressibility given by Eq. (4) is L dependent through

ℓ(L). First we note that Eq. (7) leads to a linear decrease of the mean free path as L is
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increased. It introduces a length scale L∗ at which the mean free path decreases to the

atomic scale:

L∗ ≈ ℓ0(1 +
π2

21/2rs
) (8)

The initial increase of the screening length, as L is increased, is given by

s(L) ≈ s(ℓ0) +

√
2rs
π2

s(ℓ0)

ℓ0
(L− ℓ0) (9)

It is then easily seen that, s(L) >> L >> ℓ(L) provided s(ℓ0)
ℓ0

>> max(1, π2

√
2rs

).

We have also calculated the correction to the single particle density of states for the

case that s >> ℓ,

δν

ν
≃ − 1√

2π
rsL/ℓ. (10)

Eq. (10) implies that the leading correction to the single particle density of states at

zero energy is proportional to −T−1/2. Eq. (10) also implies that the single-particle self-

energy is momentum-dependent. The single-particle scattering time is then singularly

modified, in a form similar to that of the transport lifetime.

It ought to be stressed that the results of this paper only give the leading high

temperature corrections to the quantities calculated. However Eq. (7) implies that

the scale for the low temperature phenomena is of the order of the Fermi-energy. The

leading correction suggests that provided the condition (6) is fulfilled the screening length

is consistently much longer than the mean free path and the relevant size of the system

L so that the Coulomb interaction is unscreened inside L. The conductivity in that case

rapidly tends to zero. In the opposite regime s(ℓ0) << ℓ0, the singularities found here are

absent. The problem then is dominated by the diffusion processes and the Finkelstein

scaling equations, which scale towards the metallic state are valid. In the transition

regime, s(L) ≈ ℓ(L), processes considered in both theories must be included. We hope to

pursue such an analysis. But since the initial flow downwards of the conductance in Eq.

(8) is much faster than the behavior in Finkelstein’s theory, s(ℓ0) ≈ ℓ0 may be taken as

a good approximate condition for the metal-insulator transition.

The insulating state with disorder and Coulomb interactions is most likely a glass

exhibiting the Efros-Shklovskii [13] phenomena. The precise behavior in the critical
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regime of the transition to such a glassy state is a difficult question which needs further

study.

The major new result here is the demonstration of a route to a metal-insulator tran-

sition in two dimensions as density is decreased, as is found in experiments [1–6]. The

metal-insulator transition is evident in the theory at temperatures of O(EF), also as in

experiments. The theory preserves Finkelstein’s prediction that a magnetic field coupling

to spins turns the metallic state insulating, since γt becomes irrelevant. But the approach

to the insulating state is likely to be different.

The most important prediction of the theory is the vanishing of the compressibility

as the transition is approached from the metallic side. Some existing observations [21] in

n-GaAs are consistent with the compressibility approaching zero as density is decreased

towards rs ≈ 6.8. But the metal-insulator transition was not monitored in this experi-

ment. We urge simultaneous compressibility and transport measurements to check Eq.

(6). Frequency dependent transport and susceptibility experiments are also suggested in

the critical regime to test the idea that the transition is to a glassy state.

Another prediction of the theory is the condition (6) for the metal-insulator transition.

There is not enough data to test this condition systematically. What there is, is consistent

with it in the τ -dependence and approximately in magnitude of the critical rs. In the

reported results [1–6], the metal-insulator transition occurs at ω0τ0 of about 100 and rs of

about 20 with rs at the transition showing slight increases as sample quality is improved.

Eq. (6) also implies that kFℓ at the transition point is of order unity, as is seen in the

experiments [1–6].

While considerations of the variation of compressibility in a problem with Coulomb

interactions lead to a metal-insulator transition in two-dimensions, such a transition is

already present in Finkelstein’s theory in three-dimensions. However such considerations

change the nature of the transition. We urge a study of the variation in compressibility

as well as a study of frequency-dependent transport as well as magnetic susceptibilities

near and across the metal-insulator transition, in three dimensions as well.

The basic ideas of this paper are of interest to several other electronic transitions, for

example, the superconductor to insulator transitions [22] and the quantum-Hall transi-
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tions [23].

Q.Si would like to acknowledge the support of NSF Grant No. DMR-9712626, a

Robert A. Welch Foundation grant and an A. P. Sloan Fellowship. He would also like to

thank Bell Labs and NHMFL/FSU for hospitality during his visits and V. Dobrosavljevic

for discussions.

8



REFERENCES

[1] S. V. Kravchenko, et al., Phys. Rev. B51, 7038 (1995); Phys. Rev. Lett. 77, 4938

(1996).

[2] D. Simonian, et al., Phys. Rev. Lett. 79, 2304 (1997).

[3] D. Popovic, A. B. Fowler, and S. Washburn, Phys. Rev. Lett. 79, 1543 (1997).

[4] Y. Hanien, et al., Phys. Rev. Lett.80,1288 (1998).

[5] M. Y. Simmons, et al., Phys. Rev. Lett.80,1292 (1998).

[6] P. T. Coleridge, et al. Phys. Rev. B56, 12764 (1997).

[7] E. Abrahams, et al., Phys. Rev. Lett. 42, 673 (1979)

[8] A. M. Finkelstein, Zh. Eksp. Teor. Fiz, 84, 168 (1983); Z. Physik 56, 189 (1984).

See also the following where Finkelstein’s theory has been further expounded: C.

Castellani, et al., Phys. Rev. B30, 527 (1984); C. Castellani, et al., Phys. Rev.

B30, 1596 (1984); D. Belitz and T. R. Kirkpatrick, Rev. Mod. Phys. 66, 261 (1994)

have also considered corrections to second order in disorder. These do not affect our

conclusions.

[9] B. L. Altshuler and A. G. Aronov, in Electron-Electron Interactions in Disordered

Systems, edited by A. L. Efros and M. Pollak, Elsevier, Science Publishers, New

York (1985).

[10] V. Dobrosavljevic et al., Phys. Rev. Lett. 79, 455 (1997); P. Phillips et al., Nature

395, 253 (1998); D. Belitz and T. Kirkpatrick, Phys. Rev. B58, 8214 (1998); S.

Chakravarty et al., Phys. Rev. B58, R559 (1998); C. Castellani et al., Phys. Rev.

B57, R9381 (1998); S. He and X. C. Xie, Phys. Rev. Lett. 80, 3324 (1998).

[11] C. Castellani, et al., Nuclear Phys. B225 [FS9], 441 (1983).

[12] Y. Imry and M. Wortis, Phys. Rev.B19,3580 (1979).

[13] A. L. Efros and B. Shklovskii, J. Phys. C8, L49-51 (1975).

9



[14] For a slightly different argument leading to the same result in a related problem, see

S. Kirkpatrick and C. M. Varma, Solid State Comm. 25, 821 (1978).

[15] T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437 (1982).

[16] The single-particle scattering rate is similar, though not identical, to the transport

scattering rate. We have not made such a distinction in this paper.

[17] M. A. Gell-Mann and K. A. Brueckner, Phys. Rev. 106, 364 (1957).

[18] The Gell-Mann Brueckner calculation in two dimensions is reported in A.K. Ra-

jagopal and J. C. Kimball, Phys. Rev. B15,2819 (1977).

[19] For carrier densities (n) close to the critical density (nc), the high temperature con-

ductivity σ(n) ≃ σ(nc)e
(n−nc)/nc (S. V. Kravchenko, D. Simonian, and M. Sarachik,

private communication). This functional form implies that the mobility is essentially

n−independent near the metal-insulator transition. Over a more extended density

range the mobility is a non-monotonic function of the carrier density [15].

[20] J. Hubbard, Proc. Roy. Soc. (London) A243, 336 (1957). See also, D. Pines and P.

Nozieres, The Theory of Quantum Liquids, Vol. I (Addison-Wesley, 1966).

[21] J. P. Eisenstein, L. N. Pfeiffer and K. W. West, Phys. Rev. B50, 1760 (1994).

[22] A.M. Goldman and Y. Liu, Physica D83,163 (1995); A.F. Hebard, in Strongly Cor-

related Electronic materials, eds. K.S. Bedell et al.. page 251 (1993).

[23] H. P. Wei, et al., Phys. Rev. Lett. 61, 1214 (1988).

10



FIGURES

FIG. 1. Series for the ring contribution to the ground state energy with disorder. The

hatched lines represent the t-matrix for impurity scattering and the dashed lines represent the

Coulomb interaction.
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