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Geometrically Induced Multiple Coulomb Blockade Gaps
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We have theoretically investigated the transport properties of a ring-shaped array of small tunnel

junctions, which is weakly coupled to the drain electrode.

We have found that the long range

interaction together with the semi-isolation of the array bring about the formation of stable standing
configurations of electrons. The stable configurations break up during each transition from odd to
even number of trapped electrons, leading to multiple Coulomb blockade gaps in the the I — V'

characteristics of the system.
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Transport properties of arrays of small tunnel junc-
tions, such as the Coulomb blockade effect and correlated
single electron tunneling, have been studied extensively.
[ Most of the studies, however, were carried out for
one-dimensional (1D) arrays and were based on the near-
est neighbor interaction approximation. [ﬂ—@] The soliton
potential in that case is known to decay exponentially
with the screening length ~ /C/Cy where C' and Cy are
the junction capacitance between neighboring dots and
the self-capacitance of a dot, respectively. According to
recent studies, however, the soliton potential in one- or
two-dimensional arrays should decay as 1/r, where r is
the distance, if the full interaction between dots in the
array is taken into account. @,E] In this work, we have ap-
plied the full interaction result to a ring-shaped array as
shown in Fig. m, which has two branches or paths for elec-
trons between the source and the drain electrodes. Due
to the long range interaction between dots, the charge
distribution of one branch of the array is expected to sub-
stantially affect that of the other branch, which should
considerably influence the transport property of the ar-
ray.
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FIG. 1. The two-dimensional array of size N. Dashed lines
represent tunneling junctions between neighboring dots.

Furthermore, we have isolated the array from the drain
to some degree in order to trap the electrons more easily

within the array. These two ingredients, i.e., the long
range interaction and the semi-isolation of the array, will
be shown to lead to multiple Coulomb blockade gaps in
I — V characteristics under some conditions, which will
the main topic in this paper.

In the semiclassical approach that we have adopted
here, [l the charge Q; of the i-th dot of the system of
Fig. El, where nearest neighboring dots are coupled by a
tunneling junction, is given by

> Aijo; = Qi (1)
J

where ¢; is the potential of the i-th dot and where
Aij = =Cij, i# ] (2)
A=Y Cy 3)
J

where Cj; is the capacitance between the i-th and j-th
dots. We have modeled the C;; as follows:

C() for ¢ = j,
C for ry; = a, (4)
C'af(rij —a) otherwise,

Cij =

where a is the distance between the neighboring dots (as-
sumed to be the same for all neighbors) and r;; is the
real, two-dimensional distance between the i-th and j-th
dots. The soliton potential in this full-interaction model
decays as 1/r, where r is the distance between dots, so as
to be consistent with the recent full interaction studies.
[ﬂ,ﬂ] The parameter C’ determines the degree of screen-
ing ability of nearby dots. The range 0.1 S C'/C < 0.3
seems to be reasonable for semiconductor arrays with
poor screening. [f]

To isolate the array from the drain to some degree, the
capacitance between the drain electrode and each dot in
the array is further multiplied by a uniform factor Cy/C.
We have set Cy/C = 0.1 in this work, at which value
the array is still conducting but coupled to the drain
sufficiently weakly.
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The current [ is calculated for constant bias voltage V'
between the source and the drain, via standard Monte
Carlo simulation. [E,E] The transition rates are deter-
mined by using the Golden-rule formula, with the elec-
trostatic energy of the form

E= 0564 1 Oyl 0 (5)
[ 7,7

In this paper, the unit of the current, the voltage, and the
temperature are [ = ¢/RC,V = ¢/C, and T = e?/kpC,
respectively, where R is the inverse of the transmittance
across the junction between neighboring dots.
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FIG. 2. The I — V characteristics of the 2D array with
20 (a), 40 (b), and 60 (c) dots at various temperatures.
C'/C = 0.25 for all, but Cy/C = 0.6 for N = 20 and 0.7 for
N =40 and 60. The temperature 7/T = 0.005 and 0.0005 for
crosses of (a) and for thin full line of (c), respectively. Other-
wise, T/T = 0 (thick full line), 0.0001 (solid circles), 0.00025
(dots), 0.001 (thin full line).

We show in Fig. P the I —V characteristics of the ring-
shaped array with N = 20 (a), 40 (b), and 60 (c), at var-
ious temperatures. In contrast to the simply-connected
1D array case where there is only one Coulomb blockade
gap in a low-bias voltage range, the zero-temperature
I — V characteristics in Fig. E exhibit sharp multiple
gaps: there are two gaps for the array with 20-dots,
three for 40-dots, and four for 60-dots. These gaps at
zero temperature are transformed into negative differen-
tial conductance (NDC) regions at finite temperatures,

ultimately showing monotonically increasing behavior at
higher temperatures.

In Fig. , we have shown I /I and the average number of
electrons (n) within the 40-dot array at zero temperature.
(n) shows clear steps with integer multiples up to (n) = 4,
beyond which it increases monotonically without showing
further steps, as does the current. The potential profiles
at the plateaus of (n) =1, 2, 3, and 4 for the 40-dot array
are shown in Fig. BH(a), (b), (c), and (d), respectively.
From the figure, it is clear that the current peaks arise
during the transient phase in which (n) changes from odd
to even (1 — 2 and 3 — 4 for the first and second peaks)
and the multiple Coulomb gaps are separated by those
peaks. Likewise, the peak for the 20-dot array arises
during the 1 — 2 transition, and the peaks for the 60-
dot show up during 1 — 2, 3 — 4, and 5 — 6 transitions,
respectively. The corresponding potential profiles at the
plateaus are similar to the ones in Fig. j.

The charge configurations shown in Fig. E for the 40-
dot array are stable insulating configurations with integer
number of trapped electrons within the array. As the bias
voltage increases from zero, the system undergoes succes-
sive transitions from one stable configuration to another.
If a transition occurs from even (n) to odd (n), for in-
stance, from (n) = 2 to (n) = 3, the transition is smooth
and immediate: a new electron which just tunneled into
the array to make (n) = 3 merely pushes the already
built-up standing charge configuration of two electrons
a bit toward the drain and the newly tunneled electron
stays on dot 1, making another stable configuration of
three electrons (see Fig. f-(b) and (c)). However, when a
transition occurs from odd (n) to even (n), for instance
from (n) =1 to (n) = 2, the transition takes place via in-
termediate unstable states. As the bias voltage increases
such that tunneling of the second electron into dot 1 from
the source is inevitable, the electron which has been on
dot 1 is pushed and moves toward the drain. Then pos-
sible charge configurations are: either one electron solely
travels toward the drain before another tunnels into the
array, or one electron in one branch travels ahead of the
other electron in the other branch. While these unbal-
anced charge configurations persist, the system becomes
conducting, until the stable configuration of two electrons
as shown in Fig. J-(b) is eventually established at a higher
bias voltage. That is why the current peaks show up dur-
ing the transient phase from odd to even number of (n),
whereas no current peaks arise during the transition from
even to odd (n).

We may draw an analogy for the behavior of the ring-
type array to melting of a solid. The state when the
standing configuration is built up may be compared to
a rigid solid state with symmetry. When the externally-
driven distortion of the lattice exceeds some threshold,
the symmetry is broken and the solid starts to melt.
Likewise, the bias voltage in our array drives the sys-
tem toward broken-symmetry state (the transient state



during which (n) changes from odd to even) and the ar-
ray becomes conducting. In this case, the symmetry is
imposed by the special geometry which has two branches.
One difference in this analogy is that the array system
becomes insulating again when the symmetry of the sys-
tem is restored with higher integer value of (n).
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FIG. 3. The average number of electrons (n) (right axis)
and corresponding I/I (left axis) versus bias voltage for the
40-dot array of Fig. é»(b) at zero temperature. The potential
profiles at the plateaus of (n) = 1 (a), 2 (b), 3 (c¢), and 4
(d) are also shown, with bright spots representing trapped

electrons in the array.

The instability of the transient region (from odd to
even (n)) is increased by the thermal fluctuations, so
its width broadens as the temperature is raised. There-
fore, the current peaks, whose widths depend on that of
corresponding transient regions, also broaden at higher
temperatures, as can be seen in Fig. E The thermal
fluctuations also destabilize the standing configurations
themselves established at zero temperature. The ther-
mal fluctuation gives the trapped electrons making up
the stable configurations a small but finite probability
to tunnel through nearby junctions. Once such tunnel-
ing event takes place, the balanced configuration is tem-
porarily broken and a trapped electron exits through the
drain, and the non-zero current flows in the additional
Coulomb blockade region, resulting in NDC behavior in
the I — V curve.

We can estimate the degree of stability of a charge
configuration by calculating the free energy changes AF
for its transitions to adjacent configurations. For each
of the stable configurations discussed above, AF > 0 for
all possible transitions to adjacent configurations: that
is, they are local minima of the free energy in the con-
figuration space. To illustrate this point, let us consider
the simplest possible case of the 4-dot array with iden-
tical junctions, where the stable configuration responsi-
ble for the second Coulomb gap is {0,—1,0,—1} (i.e.,
when electrons are at the second and the fourth dots -

see Fig. |l| for the dot indices). If we calculate the free
energy change AF for transitions to adjacent configura-
tions {0,0,—1,—1} and {0,—1,—1,0}, we have (for the
case of strong screening, for simplicity)

AF(V) = {C*(C? + CyC — 4C?)/2D}e?/C
— {2C%(Cy +2C)(Cy + C)/2D}eV, (6)

where the first term represents the electrostatic energy
change, the second the work done by the voltage source,
and D = (CZ 4+ 5CoC + 6C?)(CE + 5CoC + 2C?). Eq.
() shows that if Co > Cy = (VIT — 1)C/2 and if
V <V = e(C3 + CoC — 4C?)/20(Cy + 2C)(Cy + C),
AF(V) > 0. Thus, the configuration with electrons at
dots 2 and 4 is locally stable, unless thermal fluctuations
which overcome the free energy difference are introduced,
that is, if T < T.(V) = AF(V)/kp. Further analy-
sis with free energy changes can also give the widths of
the multiple Coulomb gaps and peaks. For the 4-dot
case, the second Coulomb gap appears in the interval of
(Vt(2), min(V, Vt(?’))), where Vt(2) and Vt(?’) are the thresh-
old voltages for entrance of the second and the third
electron into the array, respectively, which are given by
1/;(2) ~ 1/2Cy and 1/;(3) R~ %(2) + (C/Ces¢)?e/C, where
Cepr =/ C’g + 4CyC'. Further details will be published
elsewhere.
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FIG. 4. The shaded region in the plot represents the region
where the multiple Coulomb gaps appear for the 20-dot array.

As can be seen in the above analysis, Cy/C is an im-
portant factor for existence of the multiple Coulomb gaps
in the I — V characteristics. To observe the multiple
Coulomb gaps separated by peaks, Cy/C should not be
too weak nor too strong: in the intermediate range of
0.1 S Co/C <1 the multiple Coulomb gaps are seen in
general. The range is, however, dependent on another
factor C'/C which reflects the degree of screening by
nearby dots. In Fig. , we have schematically drawn the
region, in the plane of Cy/C and C’/C, where the mul-
tiple Coulomb gaps appear for the 20-dot array at zero
temperature. As one may anticipate, the figure shows



that with less screening, which implies stronger interac-
tion among dots, the shaded region becomes wider as it
shifts toward weaker coupling between dots. At finite
temperatures, the shaded region expands considerably
because the thermal fluctuations can give rise to appear-
ance of peaks which were too narrow to be seen at zero
temperature.

The heights of the current peaks are multiples of the
first peak height. In Fig. f-(b), the ratio of the first
and the second peak heights for the 40-dot array is very
close to 1:2. That is because the current peaks at zero
temperature reach their maxima just before the standing
configurations composed of even number of electrons are
built up, as Fig. Hclearly shows. Likewise, for the 60-dot
array, the ratio of the current peak heights are close to
1:2:3.

The multiple Coulomb gaps are observed only when
the standing configurations through interaction between
equal number of electrons in upper and lower branches of
the array are built up. For arrays of large size (N 2 20),
the standing configurations as shown in Fig. B are pos-
sible due to the long-range nature of the interaction
(Coulomb repulsion). For arrays of smaller size (N < 20),
even nearest neighbor interaction with exponentially de-
caying soliton potential is sufficient to bring about the
standing configurations. However, due to the small ar-
ray size, only one additional gap is seen in this case and,
in contrast to the case of the 20-dot array of Fig. f-(a)
where the second gap appears when (n) = 2, the sec-
ond gap in arrays with the nearest neighbor approxima-
tion appears with higher (n), which means that, due to
the short-range interaction, more electrons are needed
to build up the standing configuration. Likewise, if the
condition of weak coupling of the ring-type array to the
drain is lifted (i.e., C4/C = 1), it becomes harder for the
electrons to be trapped inside the array such that, as in
the case of nearest neighbor interaction only, the stand-
ing configurations appear with (n) higher than in arrays
with weak coupling to the drain.

The multiple Coulomb gaps are quite robust against
possible imperfection of the array. In real experiments,
one can hardly expect the dots in the array to be identi-
cal nor the array itself to be perfectly symmetrical. The
effect of those imperfections may be reflected in our simu-
lation simply by allowing the mutual capacitances given
by Eq. () to have ‘random’ contributions to some de-
gree. That is, C;; — C;;(1+ a(;;), where « is a constant
adjusting the magnitude of the randomness and (’s are
random numbers between -1/2 and 1/2. Note that we
have specifically put the subscripts for ¢ to note that
the random numbers are differently assigned for differ-
ent dots and different pairs of dots. We have observed
that for up to a = 0.1 for the 20-dot array, the multiple
Coulomb gaps are still seen (with peak positions a bit
shifted) or, at least, NDC regions are seen in place of the
multiple Coulomb gaps. If the source and the drain elec-

trodes are asymmetrically attached to the array, the mul-
tiple Coulomb gaps or the NDC regions are seen as well.
The stable charge configurations when those disorders
are introduced are similar to the ones in Fig. E but with
trapped electrons residing on geometrically asymmetrical
points as a consequence of their adjustment to changes
in electrostatic forces due to imperfections in the array.
That the multiple Coulomb gaps are robust against such
perturbations implies that details in modeling of the mu-
tual capacitance matrix are not important as long as the
long range Coulomb forces between dots are included.

We have also investigated the possibility of observing
the multiple-gap behavior in arrays with two branches
whose geometrical shape departs from the circular one
that we have considered here. Our tentative conclusion
is that the multiple Coulomb blockade gaps and NDC
behaviors seem to be generic features of arrays with two
branches, although the systematic behavior of I —V with
change of (n) is better seen in the system that we have
considered in this paper. In the discussion of the mul-
tiple gaps and the current peaks between them, the es-
sential point was that it is possible that, between two
stable insulating states, there is an unstable conducting
state that the system has to go through, and the unsta-
ble state is brought upon by the topology of the config-
uration (two branches). Whether the geometry of the
array is circular or elliptical should not matter, as long
as stable configurations with different number of trapped
electrons are found in the array. One may also note that
the multiple Coulomb gap phenomena is not possible in
one-dimensional arrays with simply-connected geometry.
In real experiments, where the size of the dots in the
array should have some distribution about the average
value and the temperature is low yet finite, we predict
that it is mostly likely that the negative differential con-
ductance regions can be seen in the I — V curve in place
of the additional Coulomb gaps.
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