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Ab initio calculation of excitonic effects in the optical spectra of semiconductors
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An ab initio approach to the calculation of excitonic effects in the optical absorption spectra of
semiconductors and insulators is formulated. It starts from a quasiparticle bandstructure calculation
and is based on the relevant Bethe–Salpeter equation. An application to bulk silicon shows a
substantial improvement with respect to previous calculations in the description of the experimental
spectrum, for both peak positions and lineshape.
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Recent advances in ab initio calculations, mostly Den-
sity Functional Theory – Local Density Approximation
(DFT-LDA) applications, allow to determine the ground
state properties and the Kohn-Sham (KS) electronic
structure [1] for even complicated systems. In order to
treat excited states, realistic quasiparticle (QP) energies
are then in general obtained by applying self-energy cor-
rections to the KS energies, usually evaluated in the GW
approximation [2]. Excellent agreement of the resulting
bandstructure with experimental data has been found
for a wide range of materials [3,4]. However, spectro-
scopic properties involving two-particle excitations are
often only poorly described at this one-particle level. The
main example is absorption spectroscopy, where a simul-
taneously created electron–hole pair interacts more or
less strongly. As a consequence, in addition to bound
exciton states which occur within the gap, the spectral
lineshape above the continuous–absorption edge is dis-
torted.
The reported qualitative agreement with experiment

of many computed KS-LDA absorption spectra, obtained
from one-electron transitions between KS states [5], is in-
deed due to a partial cancellation between two principal
errors: namely, the compensation of the large KS-LDA
underestimation of the valence–conduction bandgap,
with an overestimation of the absorption onset induced
by calculating the dielectric function entirely within the
one-particle picture. The situation often worsens when
only the first error is corrected by replacing the KS eigen-
values with the realistic QP energies [6,7]. On the other
hand, going beyond the one-particle picture through in-
clusion of local field and/or exchange–correlation effects
within DFT-LDA in the calculation of the absorption
spectrum does generally not remove the observed dis-
crepancy [8]. In fact, most of the residual error stems
from the neglect of the electron–hole interaction.
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Up to now, excitonic effects have been rarely calculated
from first principles. Some information about energetic
changes can be extracted from an LDA-based ∆-SCF ap-
proach [9]. Large excitonic effects on the spectral prop-
erties have been calculated ab initio in the case of a small
sodium cluster [6]. This approach has consequently been
generalized with the calculation of the absorption onset
for an infinite system, the Li2O crystal [10]. The calcu-
lation of the entire optical spectrum of a solid, finally,
still remains a major challenge [11]. Quantitatively cor-
rect theoretical absorption spectra are indeed needed as
a reference for the interpretation and prediction of ex-
perimental results.
A paradigmatic case is bulk silicon, which is represen-

tative for the group IV, III-V, and II-VI semiconductors.
These materials show qualitatively similar optical spec-
tra, with two major structures at 3–5 eV. The first peak
(E1) has been interpreted as a M1 type critical point
transition, and the second peak (E2) as a M2 type one
[13]. Theoretical work based on the one-electron approxi-
mation, ranging from early empirical pseudopotential ap-
proaches [14] to ab initio DFT-LDA work [8], all yielded
the same qualitative result, i.e. an underestimation of
the E1 peak by as much as 50%, reducing it to a weak
shoulder of the generally overestimated E2 peak. In order
to go beyond, Louie et al. [15] included local field effects
in the calculation of the dielectric matrix. The result-
ing spectrum is significantly improved at higher energies
(above 15 eV), but not in the region of interest around 4
eV.
Several authors suggested that strong contributions

to the E1 peak could arise from saddle point excitons
[16–18]. Excitonic effects allowed to explain the mea-
sured temperature and pressure dependence of the line-
shape and the symmetry in wavelength modulation re-
flectance spectra [17]. Until now, the most sophisticated
calculation of excitonic effects on the spectral lineshape
of silicon was done by Hanke and Sham [18]. They per-
formed a semi-empirical LCAO calculation, including lo-
cal field effects and the screened electron–hole attraction.
As in Ref. [15], local field effects alone were shown to
transfer oscillator strength to higher energies and hence
to increase the discrepancy with experiment at lower en-
ergies. On the contrary, the electron–hole interaction
shifted the position of the E1 peak to lower energies, and
almost doubled its intensity, while the oscillator strength
of the higher energy peaks was decreased. The over-
all agreement with experiment was hence improved, and
clear evidence was given for the importance of excitonic
effects. However, the final intensity ratio between the
E1 and E2 peaks was reversed, in disagreement with the
experimental spectrum. As pointed out by Wang et al.

[13], the reliability of semi-empirical approaches is lim-
ited. For instance, there are important differences, al-
ready at the one-electron level, between the spectra of
Refs. [15] and [18].
In the ab initio framework, on the other hand, the pre-

cision achievable for the computation of electronic spec-
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tra is in general still poor when compared with the qual-
ity of calculated ground state properties. This work is
aimed to shrink this gap, showing how a significant im-
provement of the ab initio calculation of absorption spec-
tra can be obtained.
The absorption spectrum is given by the imaginary

part of the macroscopic dielectric function ǫM

ǫM (ω) = 1− lim
q→0

v(q)χ̂G=0,G′=0(q;ω), (1)

where χ̂(r, r′;ω) = −iS(r, r, r′, r′;ω). S(1, 1′; 2, 2′) is the
part of the two-particle Green’s function which excludes
the disconnected term −G(1, 1′)G(2, 2′), and G(1, 1′) is
the one-particle Green’s function [18]. The notation
(1,2) stands for two pairs of space and time coordinates,
(r1, t1; r2, t2).
Following Ref. [18], we start from the Bethe–Salpeter

equation for S,

S(1, 1′; 2, 2′) = S0(1, 1
′; 2, 2′) + S0(1, 1

′; 3, 3′)Ξ(3, 3′; 4, 4′)S(4, 4′; 2, 2′).

(2)

Repeated arguments are integrated over. The term
S0(1, 1

′; 2, 2′) = G(1′, 2′)G(2, 1) yields the polarization
function of independent quasiparticles χ0, from which
the standard RPA ǫM is obtained. The kernel Ξ contains
two contributions:

Ξ(1, 1′, 2, 2′) = −iδ(1, 1′)δ(2, 2′)v(1, 2) + iδ(1, 2)δ(1′, 2′)W (1, 1′).

(3)

Considering the first term in the calculation of S is
equivalent to the inclusion of local field effects in the ma-
trix inversion of a standard RPA calculation. In order
to obtain the macroscopic dielectric constant, the bare
Coulomb interaction v contained in this term must, how-
ever, be used without the long range term of vanishing
wave vector [19]. When spin is not explicitly treated,
v gets a factor of two for singlet excitons. In the sec-
ond term,W is the screened Coulomb attraction between
electron and hole. It is obtained as a functional deriva-
tive of the self-energy in the GW approximation, neglect-
ing a term G δW

δG
. This latter term contains information

about the change in screening due to the excitation, and
is expected to be small [20]. We limit ourselves to static
screening, since dynamical effects in the electron–hole
screening and in the one particle Green’s function tend
to cancel each other [21], which suggests to neglect both
of them.
In order to solve Eq. (2), we have to invert a 4-point

function. In Ref. [18] this has been possible due to the
use of a very limited basis set. In an ab initio plane wave
calculation, such a procedure is clearly prohibitive, when
plane waves are chosen as straightforward basis functions.
Instead, the physical picture of interacting electron–hole
pairs suggests to use a basis of LDA Bloch functions,
ψn(r), expecting that only a limited number of electron–
hole pairs will contribute to each excitation.
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In this basis, χ
(n1,n2),(n3,n4)
0 = δn1,n3

δn2,n4
(fn2

−
fn1

)/(En2
− En1

− ω) and, after solving for S, in the
case of static screening, equation (2) can be written as

S(n1,n2),(n3,n4) = (Hexc − I ω)−1
(n1,n2),(n3,n4)

(fn4
− fn3

),

(4)

with

H(n1,n2),(n3,n4)
exc = (En2

− En1
)δn1,n3

δn2,n4
− i(fn2

− fn1
)×

∫

dr1

∫

dr′1

∫

dr2

∫

dr′2 ψn1
(r1)ψ

∗

n2
(r′1) Ξ(r1, r

′

1, r2, r
′

2)ψ
∗

n3
(r2)ψn4

(r′2). (5)

I is the identity operator. The energies En are the QP
levels. Together with the above form of χ0 this is con-
sistent with the use of LDA wavefunctions and updated
energy denominators in the Green’s function used to con-
struct the self-energy in the GW calculation. The fn are
Fermi-Dirac occupation numbers. We avoid to invert the
matrix (Hexc − I ω) for each absorption frequency ω by
applying the identity

(Hexc − I ω)−1 =
∑

λ,λ′

|λ > M−1
λ,λ′ < λ′|

(Eλ − ω)
, (6)

which holds for a system of eigenvectors and eigenvalues
of a general, non-hermitian matrix defined by

Hexc|λ >= Eλ|λ > . (7)

Mλ,λ′ is the overlap matrix of the (in general non-
orthogonal) eigenstates of Hexc.
Equation (7) is the effective two-particle Schrödinger

equation which we solve by diagonalization. The explicit
knowledge of the coupling of the various two-particle

channels, given by the coefficients A
(n1,n2)
λ of the state

|λ > in our LDA basis, allows to identify the character
of each transition. (This analysis would be much more
cumbersome if a matrix inversion instead of the spectral
representation was chosen, as in Ref. [18].)
The macroscopic dielectric function in Eq. (1) is ob-

tained as

ǫM (ω) = 1− lim
q→0

v(q)
∑

λ,λ′

M−1
λ,λ′

∑

n1,n2

< n1|e
−iq·r|n2 > A

(n1,n2)
λ ×

∑

n3,n4

< n4|e
+iq·r|n3 > A

∗(n3,n4)
λ′

(fn4
− fn3

)

(Eλ − ω)
. (8)

In practice, the KS eigenvalues and eigenfunctions from
a DFT-LDA calculation serve as input to the evaluation
of the RPA screened Coulomb interaction W and the
GW self-energy Σ. The KS eigenfunctions, together with
the QP energies and W , are then used in the exciton
calculation. Here each pair of indices (n1, n2) stands for
a pair of bands and one Bloch vector k in the Brillouin
zone (BZ), since we are interested in direct transitions
only.
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In principle, all combinations of bands should be con-
sidered. It can, however, be shown exactly that only pairs
containing one filled and one empty LDA state contribute
to (8). Still, the portion of the matrix Hexc to be consid-
ered is in general non-hermitian, being of the form [22]

H =

(

H(v1,c1),(v2,c2) H(v1,c1),(c2,v2)

−H∗(v1,c1),(c2,v2) −H∗(v1,c1),(v2,c2)

)

.

The off-diagonal coupling matrices do not contain the
QP transition energies, but only the interaction elements,
which are much smaller in the case of silicon. Hence, we
neglect the latter and separate the Hamiltonian into two
block-diagonal parts: the resonant contributions, which
are active for positive frequencies, and the antiresonant
ones, only contributing to negative frequencies. The ma-
trix of the resonant part by its own is hermitian, and we
therefore obtain the simpler formula

ǫM (ω) = 1 + lim
q→0

v(q)
∑

λ

|
∑

v,c;k < v,k|e−iqr|c,k > A
(v,c;k)
λ |2

(Eλ − ω)
.

(9)

(7) and (9) constitute a set of equations which has been
frequently used in the non-ab initio framework [20,24].
Here, it appears as a particular approximation to the
more general formula (8), with well-defined ab initio in-
gredients which are consistent with the GW approach.
We evaluate expression (9) for bulk silicon. The DFT-

LDA calculation is performed using norm-conserving
pseudopotentials [25], an energy cutoff of 15 Ry, and 256
special k points in the BZ [26]. Next, GW corrections
to the KS band structure are obtained following the ap-
proach of [27]. The quite smooth GW corrections are
interpolated for the denser k point mesh needed for the
absorption spectrum. We evaluate equations (7) and (9)
using different sets containing up to 2048 k points in the
BZ. In order to handle such large matrices, the symme-
try properties of the crystal are exploited. One has to be
very careful in doing so, since the spectrum turns out to
be extremely sensitive to any inconsistency in the phases
which may appear when wavefunctions are rotated, no-
tably for degenerate bands. A safe way to proceed is
to make only partial use of symmetry, considering only
those operations which form an abelian subgroup of the
point group, and which altogether allow to reconstruct
the whole zone from a corresponding reduced part. In
the case of silicon, we found it convenient to use the
1800 rotations around the x and the y axis, respectively.
These two operations T allow us to break the equation
Hkk′

Ak′

= EAk (band indices have been suppressed,
and repeated indices are summed over) into four equa-
tions to be used for points ki in the reduced zone only.
These equations are of the form hkik′

i
ak

′

i = Eaki , where

hkik′
i
= Hkik

′

i±HkiTk
′

i . The Ak are then reconstructed
from the reduced eigenvectors aki . Moreover, we apply
time reversal and hermiticity in order to accelerate the
calculation of the matrix elements.
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A set with 864 k points in the full BZ is used to
check the various ingredients of our calculation, in par-
ticular the number of bands and the importance of the
off-diagonal elements of the inverse dielectric matrix in
the evaluation of W . In the inset of Fig. 1, the continu-
ous line shows the results of a calculation with 4 valence
and 4 conduction bands, and the full ǫ−1. In the re-
gion of interest (below 4.5 eV), a 6 bands calculation (4
valence + 2 conduction, dotted line) appears to be suf-
ficient. Neglecting the off-diagonal elements of ǫ−1

GG′(q)
yields an indistinguishable curve. We then use 6 bands
and the diagonal ǫ−1 to compute the spectrum with 2048
k points in the full BZ. In the main part of Fig. 1 the ex-
perimental spectrum (dotted line) [28] is compared to: i)
an RPA calculation [29] taking only into account the QP
shifts, but not the excitonic or local field effects (short–
dashed curve): the result is, as generally observed, in
great discrepancy with experiment; ii) a calculation in-
cluding local field effects (i.e. using equation (3) with W
set to 0, long–dashed curve): the agreement is worsened,
since the oscillator strength is slightly shifted to higher
energies and both the E1 and E2 peaks are lowered, thus
confirming previous findings in the literature [15,18]; iii)
finally, the full calculation including the electron–hole
attraction (continuous curve): absolute intensities now
agree well with experiment. The remaining slight overes-
timate is of the order of what has been predicted by Ref.
[21] to be the contribution of dynamical effects. More
important, the peak positions and the relative intensity
of the main structures are both in good agreement with
experiment. Also the structure at 3.8 eV, even though
slightly overestimated due to a finite k point sampling,
has been repeatedly confirmed in theoretical and experi-
mental work [30].
In conclusion, we have shown how excitonic effects can

be included in an ab initio calculation of optical absorp-
tion spectra of semiconductors. At the example of bulk
silicon, we have demonstrated that good agreement with
experiment can be obtained for a case where the inclusion
of self-energy and local field effects alone still gives rise to
a rather poor theoretical spectrum. In this context, bulk
silicon is not particularly easy to handle, since the bottle-
neck of the calculation is the number of k points (high in
silicon, due to large dispersion) and not the energy cutoff.
Even though, the computational effort, mostly steming
from diagonalization, is reasonable and demands only a
few hours on a Cray C98. The present work opens hence
the way to first-principles calculations of optical absorp-
tion spectra with a precision comparable to that typically
achieved in ground state calculations.
We thank F. Bechstedt and R.W. Godby for helpful

discussions. This work was supported in part by the
European Community programme “Human Capital and
Mobility” through Contract No. ERB CHRX CT930337.
Computer time on the Cray C98 was granted by IDRIS
(Project No. CP9/970544).
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FIG. 1. Absorption spectra of Si. Inset: calculation ac-
cording to equation (9) with 864 k points in the BZ, using
8 bands (continuous curve) or only 6 bands (dotted curve).
Main part: Calculation according to equation (9) with 2048 k

points in the BZ, 6 bands and the diagonal approximation to
ǫ
−1: with both electron–hole attraction and local field effects
in the Hamiltonian (continuous curve), inclusion of local field
effects alone (long–dashed curve) and RPA with QP shifts
only (short–dashed curve). Experimental curve (dots) [28].
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