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Abstract

We argue that there is a new liquid phase in the two-dimensional electron

system in Si MOSFETs at low enough electron densities. The recently ob-

served metal-insulator transition results as a crossover from the percolation

transition of the liquid phase through the disorder landscape in the system

below the liquid-gas critical temperature. The consequences of our theory are

discussed for variety of physical properties relevant to the recent experiments.
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The scaling theory of localization [1] of non-interacting electrons tells us that disorder

is a relevant perturbation in two-dimension: The system is an insulator at low enough tem-

peratures. The recent discovery of a possible metal-insulator transition in Si MOSFETs by

Kravchenko et al. [2] apparently defies this long-held belief. This should not be surprising be-

cause the dominant Coulomb interaction in Si MOSFETs may invalidate the non-interacting

scaling theory. In a typical Si MOSFET sample where the transition is observed, the ratio

between the average Coulomb interaction and the Fermi energy is about 20. These intrigu-

ing experiments [2,4] generate renewed interests in the effects of interaction in disordered

systems [5]. One of the striking features of the system is the I-V nonlinearity at average

electric fields much weaker than the expected value determined by the effective temperature

of the electrons [6]. This raises questions of whether the system can be described by a theory

for homogeneous systems. (See the discussion on electric field dependence in the text for

more detail.) As we argue in this letter, the mobile positive background in Si MOSFETs

allows macroscopic inhomogeneity to occur more easily at low enough average electron den-

sities. The metal-insulator transition, the small field nonlinear I-V, as well as a host of other

phenomena result from the combined effect of the inhomogeneity and the disorder in the

system.

In a remote doped or modulation doped GaAs/AlGaAs sample, the electron system is

well described by the classic jellium model of electron gas. The roughly uniform positive

background is fixed by the bulk crystal and it does not participate in the dynamics of the

electron system. On the other hand, in an inverted Si MOSFET, the positive background

charges at the metal-oxide interface are mobile. They couple to the dynamics of the electron

system, as exhibited by the recent effective mass measurements in such systems [7]. This

allows for more possibilities for the physical properties of the electron system in Si MOS-

FETs. However, we want to emphasize that the mobile positive background is not absolutely

essential for the macroscopic inhomogeneity to occur. A slowly-varying disorder potential

combined with electron-electron correlation, for example, may also favor macroscopic inho-

mogeneity in the system.
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We now consider what happens at low enough electron densities in a Si MOSFET. For

the convenience of our argument, we treat the mobile positive background charges as holes.

We consider the adiabatic evolution of the system as the oxide thickness increases. At zero

thickness when the electrons and holes are at the same plane, the phase diagram of such

an electron-hole system, shown in Fig. 1, is well established [8,9]. The high density phase

is a metallic electron-hole liquid. The low density phase is an exciton gas. There is a two-

phase coexistence region below the critical temperature Tc. As the oxide thickness increases

beyond the Bohr radius aB, the excitons in the gas phase dissolve into separated electrons

and holes. In a disordered sample, these electrons occupy the lowest lying localized states in

the system. Because these states are strongly localized, the internal degrees of freedom, such

as spin and valley indices, do not play important roles in determining the overall energy of

the many-body system in the gas phase. This implies that the energy cost to polarize these

internal degrees of freedom is small compared to the cohesive energy of the liquid phase.

Since there is no excitonic correlation in the electron-hole liquid phase, the length scale set by

the Bohr radius does not have a special meaning to the liquid. As long as the oxide thickness

is comparable to the inter-electron distance, the liquid phase remains intact except that its

cohesive and surface energies are reduced. The liquid can be viewed as an entanglement of

two normal Fermi liquids of electrons and holes [8]. Its internal degrees of freedom couple

strongly to the dynamics of the system. It is a singlet of the spin and valley degrees of

freedom. In a disordered system, the liquid phase further lowers its energy by occupying the

valleys of the disorder landscape. It percolates through the sample in a fashion determined

by the competition among its cohesive energy, its surface energy, and the disorder potential.

This gives rise to a metal-insulator transition at the percolation threshold in the classical

limit at zero temperature. Apparently, quantum tunneling between separated liquid regions

or a finite temperature destroys this transition. This is illustrated in Fig. 2. Along the

n-axis, i.e. at zero temperature and when the coupling constant determining the phase

breaking mechanism is infinity, there is a second order phase transition at the percolation

threshold n = nc. Away from the n-axis, the transition is destroyed by a finite temperature
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or quantum tunneling. However, in the region of temperature and coupling constant close

to the critical point, the physics of the system is influenced by the very existence of the

critical point, similar to the situation in a quantum phase transition [10,11]. Therefore it is

the crossover behavior near the critical point that is observed in the experiments.

We now discuss the related experiments in Si MOSFETs and show how they are consis-

tent with the consequences of our proposed theoretical framework.

Temperature dependence of the resistivity—One of the most striking features of the exper-

iments [2,4] is that the temperature dependence of the resistivity changes from insulator-like

to metal-like as the average electron density increases. This is readily understood in our

theory. At temperatures below the critical temperature Tc and at a low enough average den-

sity, the system is in the two-phase regime. When the average density is below the threshold

density of the percolation, the conduction in the system is dominated by the phonon-assisted

hopping through the localized gas phase. At low enough temperatures, this gives the famous

Coulomb-gap behavior [12]

ρ ∼ e
√

E0/T , (1)

where E0 is an energy scale determined by the localization length and the Coulomb inter-

action. On the other hand, when the average density is above the threshold density, the

metallic liquid phase percolates through the whole sample. The sample is able to conduct

electric current. Using a simple two-fluid model for the conduction, we have

σ = flσl + fgσg and fl + fg = 1, (2)

where fl and fg are respectively the fractions of the electrons in the liquid and the gas

phases. σ, σl, and σg are respectively the total conductivity, the conductivity of the liquid

and the conductivity of the localized gas. At temperatures much lower than the cohesive

energy ∆c of the liquid, we estimate fg to be

fg ≃ Ae−
∆c
T . (3)
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Combining the above equations, we obtain the low temperature behavior of the resistivity

on the metallic side

ρ = ρ̃0 + ρ̃1e
−∆c

T , (4)

where ρ̃0 = 1/σl and ρ̃1 = Aρ̃0(1 − σg/σl). This temperature dependence of ρ on the

metallic side was first suggested by Pudalov [13] based on completely different interpretation

of the experiments. It was implicit in the experimental data of Kravchenko et al. [2]. It

was explicitly observed by Hanein et al. [14] in recent experiments on GaAs/AlGaAs hole

samples with a conducting backgate. For T > ∆c, the liquid phase ceases to exist. The

resistivity of the system depends weakly on temperature.

Scaling and duality—In a realistic sample, the coupling constant of the phase breaking

mechanism is fixed by the property of the sample. We need to consider what happens in a

constant-α plane in Fig. 2. There is a diverging length scale ξ and a vanishing energy scale

ε ∼ e2/ξ as the system approaches the critical point nc. Using the usual arguments [15],

in the region close to the critical point, we write the finite temperature resistivity of the

system in the scaling form

ρ(T, n) = ρ̃(δ/T 1/ν), (5)

where δ = (n−nc) and ν is the correlation length exponent. The value of ν predicted by the

percolation theory is ν = 4/3. This is within the range of the measured values of 1.2 ∼ 1.6.

The duality observed in the experiments [3,4] can be readily understood by the following

argument. Because there is no critical point on the constant-α plane at a finite temperature,

the function ρ̃(x) is an analytic function of its variable. Taylor expanding it at x = 0, we

have

ρ(T, nc + δ) = ρ̃(0) + ρ̃(1)
δ

T 1/ν
+

1

2
ρ̃(2)(

δ

T 1/ν
)2 + · · ·, (6)

where ρ̃(0) = ρ̃(0), ρ̃(1) = dρ̃(x)
dx

|x=0, and ρ̃(2) = d2ρ̃(x)
dx2 |x=0. Immediately we have

ρ(T, nc + δ)ρ(T, nc − δ) = (ρ̃(0))2 +O(δ2). (7)

5



Obviously, this operationally defined duality relation is a generic feature of the critical

region. It should be interesting to test this by looking at the temperature dependence of the

coefficient of the δ2 term.

Electric-field dependence of the resistivity—There are two important features associated

with the electric-field experiments [6]. First, the nonlinear I-V occurs at very small current

(or electric field). Second, the nonlinear resistivity exhibits scaling as a function of electric

field in both the metallic and insulating sides. There are two known mechanisms through

which nonlinearity can occur in a homogeneous system [15]. The first one requires that

the energy scale determined by the electric field to be the dominant energy scale in the

system. In the critical region, this energy should be larger than the temperature. However,

in a typical nonlinear I-V experiment in Si MOSFETs, the nonlinearity occurs at electric

fields as low as 0.25 mV/cm [6]. Using a phase breaking length of 10000Å, we estimate the

nonlinear electric field energy scale to be about 0.3mK, much smaller than the temperature

220mK. No nonlinearity should result from this mechanism. The second mechanism is due

to Joule heating. Joule heating raises the effective temperature Te of the electrons according

to Te ∼ E1/2 [16]. The experiments in Ref. [6] indicate that Te is about 2K at an electric

field of 50mV/cm. Using an electric field of 0.25mV/cm, we estimate Te to be 150mK. This

is lower than the lattice temperature 220mK. Therefore Joule heating is not significant at

such an electric field and no nonlinearity should result. The above arguments leads us to

believe that the nonlinear I-V is caused by the intrinsic inhomogeneity in the system.

The scaling behavior appeared at large electric fields can be readily understood following

the arguments in Ref. [15]. Close to the critical point, the vanishing energy scale ǫ ∼ e2/ξ

is cut off by the electric field through ǫ ∼ eEξ. Thus, the zero temperature resistivity can

be written in the scaling form

ρ(E, n) = ρ̃(δ/E1/ν(z+1)), (8)

where z = 1 because the vanishing energy scale at the critical point is given by ǫ ∼ e2/ξ.

Using the classic value of ν = 4/3, we find ν(z + 1) = 8/3 ≃ 2.66, which is very close to the
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experimental value of 2.70 [6].

Effects of an in-plane magnetic field—When the Zeeman energy of the magnetic field

is larger than the Fermi energy of the gas phase, it fully polarizes the electrons in the gas

phase. The portion of electrons in the gas phase at low temperatures can be estimated to

be

fg ∼ e
gµBSzH‖−∆c

T (9)

when gµBSzH‖ < ∆c. Using the two-fluid model above, we find the in-plane magnetic field

dependence of the resistivity on the metallic side at low temperatures to be

ρ ∼ ρ0 + ρ1e
gµBSzH‖/T (10)

When the Zeeman energy goes beyond ∆c, the liquid phase ceases to exist because the

critical temperature Tc is zero. The system is a fully polarized gas and it is not affected

by further increases of H‖. Fig. 3 shows this generalized situation of Eqn.(10) for a given

temperature T . The resistivity increases exponentially with H‖ from its zero-field value

ρ0(T ) to the saturated value ρm(T ) at the critical field H‖,c given by gµBSzH‖,c = ∆c, i.e.

ln ρ(T,H‖) =















ln ρ0(T ) +
H‖

H‖,c
(ln ρm(T )− ln ρ0(T )) if H‖ < H‖,c

ln ρm(T ) if H‖ > H‖,c

(11)

When T ≪ gµBSzH‖,c, ρ(T,H‖) should be exponential in H‖/T for intermediate values of

H‖. Using this we have

ln ρm(T ) ∼ ln ρ̃m +
gµBSzH‖,c

T
. (12)

The preliminary experimental data [17] is consistent with this prediction. It should be

interesting to test it in more details.

Next we look at how the low temperature behaviors of the resistivity on the metallic side

evolve for different in-plane magnetic fields. Using Eqn.(11) and Eqn.(12), we have

ln ρ(T,H‖) = (1− H‖

H‖,c

) ln ρ0(T ) +
gµBSzH‖

T
+

H‖

H‖,c

ln ρ̃m. (13)

7



This equation predicts different behaviors of ρ(T,H‖), shown in the inset of Fig. 3, for

H‖ < H‖,0 and H‖ > H‖,0, where H‖,0 = ρ̃1H‖,c/(ρ̃0 + 2ρ̃1). Using the experimental data of

ρ̃1/ρ̃0 ≃ 10 andH‖,c ≃ 20 kOe in the experiments of Simonian et al. [17], we predictH‖,0 ≃ 10

kOe. This is consistent with the data shown in Figure 4 in Ref. [17]. For H‖ ≪ H‖,0, the

temperature Tm at which ρ(T,H‖) reaches a minimum is given by

Tm ∼ ∆c

ln( ∆c

gµBSzH‖
)
. (14)

This is consistent with the preliminary experimental data [17]. It should be interesting to

test this prediction quantitatively.

Further experiments—(1) One of the most interesting experiments is to probe directly

the inhomogeneity in the electron density. This can be achieved through scanning techniques

using a single-electron-transistor as the probe for the electric field generated by the electrons

in the two-dimensional electron system. According to our theory, we expect the system to

phase separate into regions of different densities at low enough average electron densities.

The regions of the sample occupied by the liquid phase should be easily observable in one of

the implementations of such scanning techniques [18]. (2) In our theory, the spin and valley

indices play similar roles in determining the physics of the system. We expect a strain field,

which splits the valley degeneracy of the two-dimensional electron system in Si MOSFETs,

to have effects similar to those of an in-plane magnetic field. This should distinguish our

theory from those in which the spin degrees of freedom play a non-trivial role in producing

the observed experiments. (3) Light scattering experiments in such systems can also provide

useful information. Because of the occurrence of macroscopic inhomogeneity in the system

below the critical temperature Tc, we should see an increase in the wave-vector-breaking

components of the light scattering as the temperature gets below Tc.

In summary, we have argued that there is a new liquid phase in the two-dimensional

electron system in Si MOSFETs at low enough average electron densities. The percolation

transition of this liquid through the disorder landscape in the classical limit in a disordered

system causes the metal-insulator crossover behaviors observed in recent experiments. We
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have made quantitative predictions and proposed new experiments to further investigate the

physical properties of the system.
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FIGURES

FIG. 1. Phase diagram of an electron-hole system.

FIG. 2. Effects of a finite temperature and quantum tunneling on the percolation

transition.

FIG. 3. In-plane magnetic field dependence of the resistivity. The Inset shows the temperature

dependence of ρ for various in-plane magnetic fields: (a) H‖ ≪ H̃‖,0, (b) H‖ < H̃‖,0, (c) H‖ > H̃‖,0.

The temperature is measured in unit of gµBSzH‖,c.

12



T

Tc

−n 1
cn−1

exciton gas

two-phase region

electron-hole liquid



T

nnc

α−1

region of influence

constant-α plane



T

lnρ
0

mlnρ

lnρ

H ||,c H ||

ρ

10

100

1
a

b

c

0.2 0.4 0.6


