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Spacetime Foam as a Quantum Thermal Bath
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An effective model for the spacetime foam is constructed in terms of nonlocal interactions in a
classical background. In the weak-coupling approximation, the evolution of the low-energy density
matrix is determined by a master equation that predicts loss of quantum coherence. Moreover,
spacetime foam can be described by a quantum thermal field that, apart from inducing loss of coherence,
gives rise to effects such as gravitational Lamb and Stark shifts as well as quantum damping in the
evolution of the low-energy observables. [S0031-9007(98)05622-1]

PACS numbers: 04.60.—m, 03.65.Bz, 04.20.Gz, 04.70.Dy

The foamlike structure of spacetime was first suggested In order to build an effective theory, we will substitute
by Wheeler [1] and, since then, various components, suctihe spacetime foam, in which we possibly have a minimum
as wormholes [2,3] and virtual black holes [4], have beerlength because the notion of distance is not valid at
proposed. The quantum fluctuations of the geometry thaguch scale, by a fixed background with low-energy fields
constitute the spacetime foam should be of the same ordéving on it. We will perform a3 + 1 foliation of the
as the geometry itself at the Planck scale. This wouldffective spacetime that, for simplicity, will be regarded
give rise to a minimum length [5] beyond which the as flat,¢ denoting the time parameter andthe spatial
geometrical properties of spacetime would be lost, whilecoordinates. The gravitational fluctuations and the mini-
on larger scales it would look smooth and with a well-mum length present in the original spacetime foam will
defined metric structure. be modeled by means of nonlocal interactions that relate

Planck lengthl. might play a role analogous to the spacetime points that are sufficiently close in the effective
speed of light in special relativity. In this theory, there background, where a well-defined notion of distance exists.
is no physics beyond this speed limit and its existencéurthermore, these nonlocal interactions will be described
may be inferred through the relativistic corrections to thein terms of local interactions as follows. Léh;[z]}
Newtonian behavior. This would mean that a quantunbe a basis of local gauge-invariant interactions at the
theory of gravity could be constructed only on “this sidespacetime poin{x, r) made out of factors of the form
of Planck’s border” as pointed out by Markov [6]. In 2""*974[4(x /)], 4 being the low-energy field strength
fact, the analogy between quantum gravity and speciadf spins. As a notational convention, each indeixnplies
relativity is quite close: in the latter you can accelerateg dependence on the spatial positigmlso any contraction
forever even though you will never reach the speedpf indices will entail an integral over spatial positions.

of light; in the former, given a coordinate frame, you Then, we can write the nonlocal effective interaction term
can reduce the coordinate distance between two evenjg the Euclidean action a, = >y Iy with
as much as you want even though the proper distance
between them will never decrease beyond Planck lengt 1 ioi
(see Ref. [5], and references therein). This uncertaint)tllN - ﬁf dty - diy e (0 tn)hi [0 i L],
relation Ax = [, also bears a close resemblance to
the role of # in quantum mechanics: no matter which Here,c/"iv (¢, - - - ty) are dimensionless functions that van-
variables are used, it is not possible to have an actioish for relative spacetime distances larger than the length
I smaller thanz. Indeed, the uncertainty principle can scale r of the gravitational fluctuations. Furthermore,
adopt the form [7T]AT = A. these coefficients can depend only on relative positions
Spacetime foam and the related lower bound to spaceand not on the location of the gravitational fluctuation it-
time uncertainties would leave their imprint in low-energy self. The physical reason for this is conservation of en-
physics. Indeed, low-energy experiments would effecergy and momentum: the fluctuations do not carry energy,
tively suffer a nonvanishing uncertainty coming from thismomentum, or gauge charges. Thus, diffeomorphism in-
lack of resolution in spacetime measurements. Then wariance is preserved, at least at low-energy scales. One
loss of quantum coherence would be almost unavoidablghould not expect that at the Planck scale this invariance
[8]. It could also be expected that other effects such astill holds. However, this violation of energy-momentum
transition-frequency shifts and quantum damping, characsonservation is safely kept within Planck scale limits [10],
teristic of systems in a quantum environment [9], may bewvhere the processes will no longer be Markovian. Fur-
present. In this Letter, we in fact show that spacetimeahermore, the coefficients! (¢ - - - ty) will also contain
foam behaves as a quantum thermal bath with a nearlg factorfe ~5)/2]V, $(r) being the Euclidean action of the
Planckian temperature. gravitational fluctuation, which is of the ordér/1.)?.
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Since higher-spin > 0 or higher-powem > 1 inter-

keeps only the bilocal term in the action. Higher-order

actions are suppressed by inverse powers of the lowerms would introduce deviations from this noise distri-

energy length scalé, we will concentrate on the mass
term for scalar fieldsh;[t] = I, 2¢(x, 1)>, where now

bution. The nonunitary nature of the bilocal interaction
has been encoded inside the functien so that, when

the indexi just keeps track of the dependence on thansisting on writing the system in terms of a Hamiltonian,

spatial position. A simple calculation shows thht ~
eN(1/r)*, where e = ¢ SW2(r/1)4(1/1)72. The pa-
rameter e has contributions from two different scales:

an additional sum over the part of the system that is
unknown naturally appears. Note also that we have a
single functiona’(¢) because we are considering only one

on the one hand, it depends on the length scale of thiecal interaction; we will have a different functiom for

gravitational fluctuations and, because of the exponen-
tial factor, it will be very small for fluctuations of few

each kind of interaction.
The Lorentzian dynamics of the low-energy field will

Planck lengths; on the other hand, it depends on thée governed by a master equation which can be derived

low-energy scald through its inverse squared and will

after a number of steps and approximations that are briefly

therefore be very small far from Planck’s regime. In theoutlined in what follows. For each fixed functian, we
weak-coupling approximation, i.e., up to second order irfirst calculate the evolution equation for the density matrix

the expansion parameter the trilocal and higher effec-
tive interactions do not contribute. The termisand I,

are local and can be absorbed in the bare action (notﬁ

that the coefficient appearing inJy is constant and that
the coefficientsc’(r) in I; cannot depend on spacetime

positions because of diffeomorphism invariance). Con
sequently, we can write the interaction term as a biloca

term in the Euclidean action
1 .
Tint = > ] drdt' ¢V (t — t')h[t]h;[1'],

where ¢/(t — t') is of ordere5") and is concentrated
within a spacetime region of size Then, the effective
partition function has the fornZ = [ D¢ e lotlm, I,
being the bare low-energy action for the scalar field.
This bilocal effective action, when rotated back to
Lorentzian spacetime, does not lead to a unitary evolutio

The reason for this is that it is not sufficient to know the
fields and their time derivatives at an instant of time in
order to know their values at a later time: we need to
know the history of the system. There exist different

trajectories that arrive at a given configurati()qh,é’;).

p(t) obtained with the Hamiltonian
Ho(1) = Holr] + a'(D)hil1],
ol¢] being the bare Hamiltonian of the low-energy field,

and transform this equation into the interaction picture.
We then integrate this equation betwdkeand: with two

iterations and differentiate the result, so that the evolution
equation becomes an integro-differential equation for the
density matrix. Next, we perform the Gaussian average
over « and expand the result up to second order in
the parametere, taking into account thap, does not
depend ona at zeroth order but only at first order in
€, i.e., po = p + O(€) with p = {(p,) (weak-coupling
approximation). We also assume thdt) hardly changes
within a correlation timer (Markov approximation), so
thatp(zr + r) ~ p(¢). Finally, we transform the resulting

equation back to the Schrddinger picture. At the lowest

order inr/I, the result is a master equation for the low-
energy density matrix which has the form [13]

p = ~ilHo.p] - ]0 " drci () i Ty 1.

The first term gives the Hamiltonian evolution that would

The future evolution depends on these past trajectorieslso be present in the absence of fluctuations. The second

and not only on the values @ and q’) at that instant of

term is a diffusion term which will be responsible for

time. Therefore, the system cannot possess a well-defindde loss of coherence (and the subsequent increase of

Hamiltonian vector field and suffers from an intrinsic
loss of predictability [11]. This can be best dealt with

entropy). It is a direct consequence of the foamlike
structure of spacetime and the related existence of a

by writing, up to a determinant, the exponential of theminimum length.

interaction term as [12]
ol f D ot JH V=0l @) = [dra Ol
Here, the continuous matriy;;(r — ¢) is the inverse

of ¢t —1), ie, [dt"yult — "G —1) =
8{6(t — '). We see thata is a random spacetime

The characteristic decoherence timginduced by the
diffusion term can be easily calculated and yields the fol-
lowing ratio between the decoherence time and the low-
energy length scaler;/l ~ ¢5)(r/1.)~*. Because of
the exponential factor, only the gravitational fluctuations
whose size is very close to Planck length will give a
sufficiently small coherence time. Slightly larger fluctu-

function subject to a Gaussian distribution. At secondations will have a very small effect on the unitarity of

order in e and lowest order iry/l, f[he two—p'oint cor-
relation function is equal tda'(t)a’(t')) = ¢ (t — t')

the effective theory. For higher spins and/or powers of
the field strength, the decoherence time increases by pow-

and (a'(1)) = 0. Note that the Gaussian character ofers ofl/l.. For instance, if we consider interactions that

the distribution for the noisex is a consequence of the
weak-coupling approximation (second ordere; which

mix fields with different spin, then the next relevant deco-
herence time corresponds to the scalar-fermion interaction
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term ¢2¢ ¢, which has an associated decoherence ratiat the same instant of time. Therefore, the functféitr)
74/ proportional to/ /.. Note that this decoherence time can be interpreted as a kind of memory function.
may be small enough for sufficiently high energies. If we assume that the bath is in a thermal staje=
Let us now go a bit further and describe spacetimeZ ~'e #+/T with a temperaturd” and define the average
foam in terms of a quantum thermal bath. With this aim,of any operatorQ as(Q) = Tr,(Qp,), We can compute
we will consider a system consisting of the low-energythe correlation functios’(r — ') = (a‘'(t)a’(¢')):
fields coupled to a quantum bath [9]. By comparing this N e -
system with the results obtained above for gravitational ¢”(r) = f do G (w)[N(w) + 1/2]coswT,
fluctuations, we will see that the latter can be substituted 0
by a thermal bath. So, let us start with a Hamiltonian ofwhere N(w) = [explw/T) — 1]7! is the mean occupa-
the form tion number of the bath corresponding to the frequency
H =Hy + Hy + Hy. w. Also, it can be shown that the_tra(:Q) corresponds
to a Gaussian average overonly in the case that the
H) is the bare Hamiltonian that represents the low-energypath is in a thermal state [9], as we are considering.
fields andH, is the Hamiltonian of a bath that, for sim-  \Wwe are now ready, following similar steps to those
plicity, will be represented by a massless scalar fieldoutlined before, to write down the master equation for the
The interaction Hamiltonian will be of the forffinx =  |ow-energy density matrix. If we keep terms only up to
&'h;, where the noise operatdr is of the form¢'(r) =  second order in the expansion parameegiven by the
i [dkw x(w)[a®(k)e'@ ™) — H.c]. In this expres- product of the thermal correlation time, ~ 1/T of &,
sion, a and a™ are, respectively, the annihilation and the size of the operatot and the root mean square of
creation operators associated with the baths= k2, and &, which is of the order of/Z, and we also assume that
x (@) represents the coupling between the system and thg, /I < 1, then the resulting equation has the same form
bath. This implies that'(r) = x"p,(t), with p;(t) =  as the classical master equation obtained above with the
p(x/, 1) being the momentum of the bath scalar field andcorrelation functionc’/ () substituted forc”/(7). From
x"" = [dky(w)cogk(x’ — x/)] being the coupling be- the identification of both modelsy(= «), we conclude
tween the low-energy field and the bath in the positionthat the temperature of the heat bath is determined by the
representation. The couplingw) must be such thatthere size of the gravitational fluctuations, i.€f, ~ 1/r and
exists a significant interaction with all the bath frequencieshat e = e < 1 (weak coupling approximation). Note
w up to the natural cutoff~!. All the relevantinformation also that the couplingy(w) is uniquely determined by
about the coupling is encoded in the commutation relationghe correlation functionc’/(r) by means of a suitable
and the correlation function of the noise operagor mode expansion. The zeroth order approximation fh
Since the commutator of the noise operatat different  that we have made in order to compare and identify
times is ac number, we can introduce the so-calledboth models can be regarded as a kind of semiclassical
commutative noise representation [9], which will allow us approximation since all the quantum features of the noise
to compare this model with that of topological fluctuationshave disappeared from the master equation.
previously described. This can be done by defining a We can however obtain a more general master equation,

new noise operatak in the following form:a'(r)p(t') =  valid up to second order i and with no restriction
3[€'(®), p(t)]+. It is straightforward to check that the in r/I, that takes into account the quantum nature of
operator@ commutes at any time, i.e.a@’'(r), @’(t')] = the gravitational fluctuations. These contributions will be

0. However, this does not mean that it commutes withfairly small in the low-energy regime, but may provide
everything. Indeed, the commutator @fwith any low-  interesting information about the higher-energy regimes in

energy operatod is honvanishing and has the form which I may be of the order of a few Planck lengths and
_ _ t _ . for which the weak coupling approximation is still valid.
[A'(r), &’ ()] = [0 dr[A' (1), (D)) = 1), The quantum noise effects [9] are reflected in the master

equation through a term proportionalf8 (7) and another
proportional to ¢”(7), both of them integrated over

T € [0,]. Because of these incomplete integrals, each
term provides two different kinds of contributions whose
origin can be traced back to the well-known formula
— ()2 [o drel®” = 78(w) + P(i/w), whereP is the Cauchy
wlx’ — x| principal part [14]. Thus, thg term contains a dissipation
The commutator above vanishes for low-energy operatorgart, necessary for the preservation of commutators, and a
that are in the far past of the noise and is nonzero when thegontribution to what can be interpreted as a gravitational
are in the near past or the future. Only in the so-called firstamb shift. On the other hand, the term gives rise
Markov approximation the frontier among both regimes isto four different contributions: The already discussed
sharply located where both noise and low-energy fields ardiffusion term, another diffusion term originated from

where
fi(r) =f do ©’G7(w)coswT,
0

. sinw|x! — x/
G — Sl =]
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the vacuum fluctuations of the bath and that does notve have done with localized gravitational fluctuations, we
vanish at zero temperature, another contribution to theoon realize that, in order to reproduce the infinite corre-
gravitational Lamb shift and, finally, a shift in the scalar- lation time, the couplingg’ must be constant, that they
field oscillation frequencies that can be interpreted asnust commute with every other operator and, related to
a gravitational Stark effect. The size of these effectsthese two facts, that only the zero-frequency mode of the
compared with the bare evolution, can be calculatedbath can be coupled to the low-energy fields, in agreement
after some work: the thermal diffusion term is of orderwith the result that the Gaussian distribution is space-
e 50 (r/1,)*, which is the only one that survived in the time independent and that the effective theory is, in this
previous approximations; the diffusion created by vacuuntase, unitary.

fluctuations, the damping term, and the Stark effect are Let us conclude with a brief summary. We have
smaller by a factor/I; and the Lamb shift is smaller than described spacetime foam in terms of a quantum thermal
the diffusion term by a factofr /7). field, which induces a loss of coherence in the low-energy

The models described in this Letter are particularlydynamics as well as other effects of quantum nature such
suited to the study of low-energy effects produced byas dissipation and gravitational Lamb and Stark shifts.
simply connected topology fluctuations such as virtual | am very grateful to G.A. Mena Marugan, P.F.
black holes [4]. Indeed, it has been shown that virtualGonzalez-Daz, C. Barceld, C. Cabrillo, and J.|. Cirac for
black holes can be represented from the low-energhelpful discussions. | was supported by funds provided
point of view by effective interactions:;[¢] like the by DGICYT and MEC (Spain) under Contract Adjunct to
ones employed here. The master equation can then libe Project No. PB94-0107.
interpreted as providing the evolution of the density
matrix in the presence of a bath of ubiquituous quantum
topological fluctuations of the virtual-black-hole type.

M_ultiply connected fluctuations (with vanishing second [1] J.A. Wheeler, inRelativity, Groups and Topologgdited
Betti number) such as wormholes [2] can also be de-" " py B s Dewitt and C.M. DeWitt (Gordon and Breach,
scribed as nonlocal interactions that, in the weak-coupling  New York, 1964). For a recent approach, see S. Carlip,
approximation, become bilocal. The coefficients of Phys. Rev. Lett79, 4071 (1997).
this bilocal term do not depend on spacetime positions[2] S.W. Hawking, Phys. Rev. 37, 904 (1988).
since multiply connected topology fluctuations connect [3] S. Coleman, Nucl. Phy$307, 867 (1988).
spacetime points that may be far apart from each other[4] S.W. Hawking, Phys. Rev. 33, 3099 (1996).
Diffeomorphism invariance also requires the spacetime[S] L.J. Garay, Int. J. Mod. Phys. AQ, 145 (1995).
independence of/. This can also be seen by analyz- [6] M.A. Markov, Institute for Nuclgar Research Report
ing these wormholes from the point of view of the uni- No. P-0187, Moscow, 1980; Institute for Nuclear Re-
versal covering manifold, which is by definition simply search Report No. P-0208, Moscow, 1981; as quoted in

’ . H.-H. Borzeszkowski and H.-J. Tredefhe Meaning of

connectgd. Here, ea(.:h.vyormhole is rep_reser.lt.ed by two Quantum Gravity(Reidel, Dordrecht, 1988).
boundaries located at infinity and suitably identified. This 7] v B. Mensky, Phys. Lett. A155 229 (1991):162 219
identification is equivalent to introducing coefficients (1992).
that relate the bases of the Hilbert space of wormholes in[g] S.w. Hawking, Commun. Math. Phy87, 395 (1982).
both regions of the universal covering manifold. Since [9] C.W. Gardiner,Quantum Noisd¢Springer-Verlag, Berlin,
¢/ are just the coefficients in a change of basis, they = 1991).
will be constant. As a direct consequence, the correlall0] W.G. Unruh and R.M. Wald, Phys. Rev. B2, 2176
tion time for the functionsy’ is infinite. This means that (1995).
the functionsa’ cannot be interpreted as noise sourced!l] (Dl.éAégl)Ehezer and R.P. Woodard, Nucl. Phys325 389
;[jhea;eir;eiﬁ/usséai;hirstqgg;eig ii%ﬁrilesisagsﬁé?gn?o”jl}hl 12] J. Zinn-Justin,Quar_ltum_Field Theory and Critical Phe-

- AN . . L nomena(Oxford University Press, Oxford, 1996), 3rd. ed.
Gaussian distribution to which they are subject is there[lg]

. : T. Banks, L. Susskind, and M.E. Peskin, Nucl. Phys.
fore global, spacetime independent [3]. Consequently,the ~ go44 125 (1984).

master equation contains no diffusion term and, actuallyj14] M. Reed and B. Simorlethods of Modern Mathematical
it predicts a unitary evolution for the density matrix. |If Physics |. Functional Analysi§Academic Press, New
we still try to represent wormholes by a thermal bath as  York, 1972).

2511



