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An effective model for the spacetime foam is constructed in terms of nonlocal interactions
classical background. In the weak-coupling approximation, the evolution of the low-energy de
matrix is determined by a master equation that predicts loss of quantum coherence. Mor
spacetime foam can be described by a quantum thermal field that, apart from inducing loss of coh
gives rise to effects such as gravitational Lamb and Stark shifts as well as quantum damping
evolution of the low-energy observables. [S0031-9007(98)05622-1]
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The foamlike structure of spacetime was first suggest
by Wheeler [1] and, since then, various components, su
as wormholes [2,3] and virtual black holes [4], have bee
proposed. The quantum fluctuations of the geometry th
constitute the spacetime foam should be of the same or
as the geometry itself at the Planck scale. This wou
give rise to a minimum length [5] beyond which the
geometrical properties of spacetime would be lost, wh
on larger scales it would look smooth and with a wel
defined metric structure.

Planck lengthlp might play a role analogous to the
speed of light in special relativity. In this theory, ther
is no physics beyond this speed limit and its existen
may be inferred through the relativistic corrections to th
Newtonian behavior. This would mean that a quantu
theory of gravity could be constructed only on “this sid
of Planck’s border” as pointed out by Markov [6]. In
fact, the analogy between quantum gravity and spec
relativity is quite close: in the latter you can accelera
forever even though you will never reach the spee
of light; in the former, given a coordinate frame, yo
can reduce the coordinate distance between two eve
as much as you want even though the proper distan
between them will never decrease beyond Planck len
(see Ref. [5], and references therein). This uncertain
relation Dx $ lp also bears a close resemblance
the role of h̄ in quantum mechanics: no matter whic
variables are used, it is not possible to have an act
I smaller thanh̄. Indeed, the uncertainty principle can
adopt the form [7]DI $ h̄.

Spacetime foam and the related lower bound to spa
time uncertainties would leave their imprint in low-energ
physics. Indeed, low-energy experiments would effe
tively suffer a nonvanishing uncertainty coming from thi
lack of resolution in spacetime measurements. Then
loss of quantum coherence would be almost unavoida
[8]. It could also be expected that other effects such
transition-frequency shifts and quantum damping, chara
teristic of systems in a quantum environment [9], may b
present. In this Letter, we in fact show that spacetim
foam behaves as a quantum thermal bath with a nea
Planckian temperature.
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In order to build an effective theory, we will substitut
the spacetime foam, in which we possibly have a minimu
length because the notion of distance is not valid
such scale, by a fixed background with low-energy fiel
living on it. We will perform a3 1 1 foliation of the
effective spacetime that, for simplicity, will be regarde
as flat, t denoting the time parameter andx the spatial
coordinates. The gravitational fluctuations and the min
mum length present in the original spacetime foam w
be modeled by means of nonlocal interactions that rel
spacetime points that are sufficiently close in the effecti
background, where a well-defined notion of distance exis
Furthermore, these nonlocal interactions will be describ
in terms of local interactions as follows. Lethhiftgj
be a basis of local gauge-invariant interactions at t
spacetime pointsx, td made out of factors of the form
l

2ns11sd24
p ffsx, tdg2n, f being the low-energy field strength

of spins. As a notational convention, each indexi implies
a dependence on the spatial positionx; also any contraction
of indices will entail an integral over spatial positions
Then, we can write the nonlocal effective interaction ter
in the Euclidean action asIint ­

P
N IN with

IN ­
1

N!

Z
dt1 · · · dtN ci1···iN st1 · · · tN dhi1ft1g · · · hiN

ftN g .

Here,ci1···iN st1 · · · tN d are dimensionless functions that van
ish for relative spacetime distances larger than the len
scale r of the gravitational fluctuations. Furthermore
these coefficients can depend only on relative positio
and not on the location of the gravitational fluctuation i
self. The physical reason for this is conservation of e
ergy and momentum: the fluctuations do not carry ener
momentum, or gauge charges. Thus, diffeomorphism
variance is preserved, at least at low-energy scales. O
should not expect that at the Planck scale this invarian
still holds. However, this violation of energy-momentum
conservation is safely kept within Planck scale limits [10
where the processes will no longer be Markovian. Fu
thermore, the coefficientsci1···iN st1 · · · tN d will also contain
a factorfe2Ssrdy2gN , Ssrd being the Euclidean action of the
gravitational fluctuation, which is of the ordersrylpd2.
© 1998 The American Physical Society
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Since higher-spins . 0 or higher-powern . 1 inter-
actions are suppressed by inverse powers of the lo
energy length scalel, we will concentrate on the mass
term for scalar fieldshiftg ­ l22

p fsxi, td2, where now
the index i just keeps track of the dependence on th
spatial position. A simple calculation shows thatIN ,
eN slyrd4, where e ­ e2Ssrdy2srylpd4slylpd22. The pa-
rameter e has contributions from two different scales
on the one hand, it depends on the length scale of t
gravitational fluctuationsr and, because of the exponen
tial factor, it will be very small for fluctuations of few
Planck lengths; on the other hand, it depends on t
low-energy scalel through its inverse squared and wil
therefore be very small far from Planck’s regime. In th
weak-coupling approximation, i.e., up to second order
the expansion parametere, the trilocal and higher effec-
tive interactions do not contribute. The termsI0 andI1
are local and can be absorbed in the bare action (n
that the coefficientc appearing inI0 is constant and that
the coefficientscistd in I1 cannot depend on spacetime
positions because of diffeomorphism invariance). Co
sequently, we can write the interaction term as a biloc
term in the Euclidean action

Iint ­
1
2

Z
dtdt0 cijst 2 t0dhiftghjft0g ,

where cijst 2 t0d is of order e2Ssrd and is concentrated
within a spacetime region of sizer. Then, the effective
partition function has the formZ ­

R
D f e2I01Iint , I0

being the bare low-energy action for the scalar field.
This bilocal effective action, when rotated back t

Lorentzian spacetime, does not lead to a unitary evolutio
The reason for this is that it is not sufficient to know th
fields and their time derivatives at an instant of time i
order to know their values at a later time: we need
know the history of the system. There exist differen
trajectories that arrive at a given configurationsf, Ùfd.
The future evolution depends on these past trajector
and not only on the values off and Ùf at that instant of
time. Therefore, the system cannot possess a well-defin
Hamiltonian vector field and suffers from an intrinsic
loss of predictability [11]. This can be best dealt with
by writing, up to a determinant, the exponential of th
interaction term as [12]

eIint ,
Z

D a e2 1

2

R
dtdt 0 gijst2t 0daistdaj st0de2

R
dt aistdhiftg.

Here, the continuous matrixgijst 2 t0d is the inverse
of cijst 2 t0d, i.e.,

R
dt00 gikst 2 t00dckjst00 2 t0d ­

d
j
i dst 2 t0d. We see thata is a random spacetime

function subject to a Gaussian distribution. At secon
order in e and lowest order inryl, the two-point cor-
relation function is equal tokaistdajst0dl ­ cijst 2 t0d
and kaistdl ­ 0. Note that the Gaussian character o
the distribution for the noisea is a consequence of the
weak-coupling approximation (second order ine), which
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keeps only the bilocal term in the action. Higher-orde
terms would introduce deviations from this noise distr
bution. The nonunitary nature of the bilocal interactio
has been encoded inside the functiona, so that, when
insisting on writing the system in terms of a Hamiltonian
an additional sum over the part of the system that
unknown naturally appears. Note also that we have
single functionaistd because we are considering only on
local interaction; we will have a different functiona for
each kind of interaction.

The Lorentzian dynamics of the low-energy field wil
be governed by a master equation which can be deriv
after a number of steps and approximations that are brie
outlined in what follows. For each fixed functiona, we
first calculate the evolution equation for the density matr
rastd obtained with the Hamiltonian

Hastd ­ H0ftg 1 aistdhiftg ,

H0ftg being the bare Hamiltonian of the low-energy field
and transform this equation into the interaction pictur
We then integrate this equation between0 andt with two
iterations and differentiate the result, so that the evoluti
equation becomes an integro-differential equation for t
density matrix. Next, we perform the Gaussian avera
over a and expand the result up to second order
the parametere, taking into account thatra does not
depend ona at zeroth order but only at first order in
e, i.e., ra ­ r 1 Osed with r ­ kral (weak-coupling
approximation). We also assume thatrstd hardly changes
within a correlation timer (Markov approximation), so
thatrst 1 rd , rstd. Finally, we transform the resulting
equation back to the Schrödinger picture. At the lowe
order in ryl, the result is a master equation for the low
energy density matrix which has the form [13]

Ùr ­ 2ifH0, rg 2
Z `

0
dtcijstd fffhi , fhj , rgggg .

The first term gives the Hamiltonian evolution that woul
also be present in the absence of fluctuations. The sec
term is a diffusion term which will be responsible fo
the loss of coherence (and the subsequent increase
entropy). It is a direct consequence of the foamlik
structure of spacetime and the related existence o
minimum length.

The characteristic decoherence timetd induced by the
diffusion term can be easily calculated and yields the fo
lowing ratio between the decoherence time and the lo
energy length scale:tdyl , eSsrdsrylpd24. Because of
the exponential factor, only the gravitational fluctuation
whose size is very close to Planck length will give
sufficiently small coherence time. Slightly larger fluctu
ations will have a very small effect on the unitarity o
the effective theory. For higher spins and/or powers
the field strength, the decoherence time increases by p
ers of lylp. For instance, if we consider interactions tha
mix fields with different spin, then the next relevant deco
herence time corresponds to the scalar-fermion interact
2509
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term f2c̄c , which has an associated decoherence ra
tdyl proportional tolylp. Note that this decoherence tim
may be small enough for sufficiently high energies.

Let us now go a bit further and describe spacetim
foam in terms of a quantum thermal bath. With this aim
we will consider a system consisting of the low-energ
fields coupled to a quantum bath [9]. By comparing th
system with the results obtained above for gravitation
fluctuations, we will see that the latter can be substitut
by a thermal bath. So, let us start with a Hamiltonian
the form

H ­ H0 1 Hint 1 Hb .

H0 is the bare Hamiltonian that represents the low-ener
fields andHb is the Hamiltonian of a bath that, for sim
plicity, will be represented by a massless scalar fie
The interaction Hamiltonian will be of the formHint ­
jihi , where the noise operatorj is of the formjistd ­
i
R

dk
p

v xsvd fa1skdeisvt2kxi d 2 H.c.g. In this expres-
sion, a and a1 are, respectively, the annihilation an
creation operators associated with the bath,v ­

p
k2, and

xsvd represents the coupling between the system and
bath. This implies thatjistd ­ x ijpjstd, with pjstd ;
psxj , td being the momentum of the bath scalar field an
x ij ­

R
dkxsvd cosfksxi 2 xjdg being the coupling be-

tween the low-energy field and the bath in the positio
representation. The couplingxsvd must be such that there
exists a significant interaction with all the bath frequenci
v up to the natural cutoffr21. All the relevant information
about the coupling is encoded in the commutation relatio
and the correlation function of the noise operatorj.

Since the commutator of the noise operatorj at different
times is a c number, we can introduce the so-calle
commutative noise representation [9], which will allow u
to compare this model with that of topological fluctuation
previously described. This can be done by defining
new noise operator̄a in the following form:āistdrst0d ;
1
2 fjistd, rst0dg1. It is straightforward to check that the
operatorā commutes at any time, i.e.,fāistd, ājst0dg ­
0. However, this does not mean that it commutes w
everything. Indeed, the commutator ofā with any low-
energy operatorA is nonvanishing and has the form

fAistd, ājst0dg ­
Z t

0
dtfAistd, hkstdg Ùfjkst0 2 td ,

where

fijstd ­
Z `

0
dv v2Gijsvd cosvt ,

Gijsvd ­
sinvjxi 2 xj j

vjxi 2 xj j
xsvd2.

The commutator above vanishes for low-energy operat
that are in the far past of the noise and is nonzero when t
are in the near past or the future. Only in the so-called fi
Markov approximation the frontier among both regimes
sharply located where both noise and low-energy fields
2510
tio
e

e
,
y
is
al
ed
of

gy
-
ld.

d

the

d

n

es

ns

d
s
s
a

ith

ors
hey
rst
is
are

at the same instant of time. Therefore, the functionfijstd
can be interpreted as a kind of memory function.

If we assume that the bath is in a thermal staterb ­
Z21e2HbyT with a temperatureT and define the average
of any operatorQ as kQl ; TrbsQrbd, we can compute
the correlation function̄cijst 2 t0d ; kāistdājst0dl:

c̄ijstd ­
Z `

0
dv v3Gijsvd fNsvd 1 1y2g cosvt ,

where Nsvd ­ fexpsvyTd 2 1g21 is the mean occupa-
tion number of the bath corresponding to the frequenc
v. Also, it can be shown that the tracekQl corresponds
to a Gaussian average overā only in the case that the
bath is in a thermal state [9], as we are considering.

We are now ready, following similar steps to those
outlined before, to write down the master equation for th
low-energy density matrix. If we keep terms only up to
second order in the expansion parameterē given by the
product of the thermal correlation timetā , 1yT of ā,
the size of the operatorh and the root mean square of
ā, which is of the order of

p
c̄, and we also assume that

tāyl ø 1, then the resulting equation has the same form
as the classical master equation obtained above with t
correlation functioncijstd substituted forc̄ijstd. From
the identification of both models (ā ; a), we conclude
that the temperature of the heat bath is determined by t
size of the gravitational fluctuations, i.e.,T , 1yr and
that ē ­ e ø 1 (weak coupling approximation). Note
also that the couplingxsvd is uniquely determined by
the correlation functioncijstd by means of a suitable
mode expansion. The zeroth order approximation inryl
that we have made in order to compare and identif
both models can be regarded as a kind of semiclassic
approximation since all the quantum features of the nois
have disappeared from the master equation.

We can however obtain a more general master equatio
valid up to second order ine and with no restriction
in ryl, that takes into account the quantum nature o
the gravitational fluctuations. These contributions will be
fairly small in the low-energy regime, but may provide
interesting information about the higher-energy regimes i
which l may be of the order of a few Planck lengths and
for which the weak coupling approximation is still valid.
The quantum noise effects [9] are reflected in the mast
equation through a term proportional tofijstd and another
proportional to c̄ijstd, both of them integrated over
t [ f0, `g. Because of these incomplete integrals, eac
term provides two different kinds of contributions whose
origin can be traced back to the well-known formulaR`

0 dt eivt ­ pdsvd 1 Psiyvd, whereP is the Cauchy
principal part [14]. Thus, thef term contains a dissipation
part, necessary for the preservation of commutators, and
contribution to what can be interpreted as a gravitationa
Lamb shift. On the other hand, thēc term gives rise
to four different contributions: The already discussed
diffusion term, another diffusion term originated from
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the vacuum fluctuations of the bath and that does n
vanish at zero temperature, another contribution to t
gravitational Lamb shift and, finally, a shift in the scalar
field oscillation frequencies that can be interpreted
a gravitational Stark effect. The size of these effect
compared with the bare evolution, can be calculate
after some work: the thermal diffusion term is of orde
e2Ssrdsrylpd4, which is the only one that survived in the
previous approximations; the diffusion created by vacuu
fluctuations, the damping term, and the Stark effect a
smaller by a factorryl; and the Lamb shift is smaller than
the diffusion term by a factorsryld2.

The models described in this Letter are particular
suited to the study of low-energy effects produced b
simply connected topology fluctuations such as virtu
black holes [4]. Indeed, it has been shown that virtu
black holes can be represented from the low-ener
point of view by effective interactionshiftg like the
ones employed here. The master equation can then
interpreted as providing the evolution of the densit
matrix in the presence of a bath of ubiquituous quantu
topological fluctuations of the virtual-black-hole type.

Multiply connected fluctuations (with vanishing secon
Betti number) such as wormholes [2] can also be d
scribed as nonlocal interactions that, in the weak-coupli
approximation, become bilocal. The coefficientscij of
this bilocal term do not depend on spacetime positio
since multiply connected topology fluctuations conne
spacetime points that may be far apart from each oth
Diffeomorphism invariance also requires the spacetim
independence ofcij . This can also be seen by analyz
ing these wormholes from the point of view of the uni
versal covering manifold, which is by definition simply
connected. Here, each wormhole is represented by t
boundaries located at infinity and suitably identified. Th
identification is equivalent to introducing coefficientscij

that relate the bases of the Hilbert space of wormholes
both regions of the universal covering manifold. Sinc
cij are just the coefficients in a change of basis, the
will be constant. As a direct consequence, the corre
tion time for the functionsai is infinite. This means that
the functionsai cannot be interpreted as noise source
that are Gaussian distributed at each spacetime point
dependently. Rather, they are infinitely coherent. Th
Gaussian distribution to which they are subject is ther
fore global, spacetime independent [3]. Consequently, t
master equation contains no diffusion term and, actual
it predicts a unitary evolution for the density matrix. I
we still try to represent wormholes by a thermal bath a
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we have done with localized gravitational fluctuations, we
soon realize that, in order to reproduce the infinite corre
lation time, the couplingsji must be constant, that they
must commute with every other operator and, related t
these two facts, that only the zero-frequency mode of th
bath can be coupled to the low-energy fields, in agreeme
with the result that the Gaussian distribution is space
time independent and that the effective theory is, in thi
case, unitary.

Let us conclude with a brief summary. We have
described spacetime foam in terms of a quantum therm
field, which induces a loss of coherence in the low-energ
dynamics as well as other effects of quantum nature suc
as dissipation and gravitational Lamb and Stark shifts.
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