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The Quantum–Mechanical Position Operator in Extended Systems
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The position operator (defined within the Schrödinger representation in the standard way) becomes
meaningless when periodic boundary conditions are adopted for the wavefunction, as usual in con-
densed matter physics. We show how to define the position expectation value by means of a simple
many–body operator acting on the wavefunction of the extended system. The relationships of the
present findings to the Berry–phase theory of polarization are discussed.

The position operator within the Schrödinger repre-
sentation acts multiplying the wavefunction by the space
coordinate. This is trivial, but only applies to the bound
eigenstates of a finite system, which belong to the class
of square–integrable wavefunctions. This is not the way
how condensed matter theory works: almost invariably,
one considers a large system within periodic boundary
conditions (PBC), and the position operator (defined as
usual) becomes then meaningless. For the sake of simplic-
ity, most of this Letter will deal with the one–dimensional
case. The Hilbert space of the single–particle wavefunc-
tions is defined by the condition ψ(x+L) = ψ(x), where
L is the imposed periodicity, chosen to be large with re-
spect to atomic dimensions. An operator maps any vec-
tor of the given space into another vector belonging to
the same space: the multiplicative position operator x
is not a legitimate operator when PBC are adopted for
the state vectors, since xψ(x) is not a periodic function
whenever ψ(x) is such. Of course, any periodic func-
tion of x is a legitimate multiplicative operator: this is
the case e.g. of the nuclear potential acting on the elec-
trons. Since the position operator is ill defined, so is its
expectation value, whose observable effects in condensed
matter are related to macroscopic polarization. For the
crystalline case, the long–standing problem of dielectric
polarization has been solved a few years ago [1–3]: po-
larization is a manifestation of the Berry phase [4,5], i.e.

is an observable which cannot be cast as the expectation
value of any operator, being instead a gauge–invariant
phase of the wavefunction. Here we find a different, and
more fundamental, solution: we arrive indeed at defin-
ing the expectation value of the position in an extended
quantum system within PBC, where the operator enter-
ing this definition is simple but rather peculiar. Amongst
the most relevant features, the expectation value is de-
fined modulo L, and the operator is no longer one–body:
it acts as a genuine many–body operator on the peri-
odic wavefunction of N electrons. In the crystalline case,
the present result can be related to a discretized Berry
phase, and sheds new light into the physical meaning of
the latter.

We study a system of N electrons in a segment of
length L, and eventually the thermodynamic limit is

taken: L → ∞, N → ∞, and N/L = n0 constant. At
any finite L the ground eigenfunction obeys PBC in each
electronic variable separately:

Ψ0(x1, . . . , xi, . . . , xN ) = Ψ0(x1, . . . , xi+L, . . . , xN ). (1)

We assume the ground state nondegenerate, and we deal
with insulating systems only: this means that the gap be-
tween the ground eigenvalue and the excited ones remains
finite for L→ ∞. Since the spin variable is irrelevant to
this problem, we omit it altogether and we deal with a
system of spinless electrons. Our major goal is defining
the expectation value of the electronic position 〈X〉, and
to prove that our definition provides in the thermody-
namic limit the physical macroscopic polarization of the
sample.

Before attacking the main problem, let us discuss the
much simpler case where PBC are not chosen, and the
N -particle wavefunction (called Φ0 in this case) goes to
zero exponentially outside a bounded region of space. We
may safely use the operator X̂ =

∑N
i=1

xi, and define the
position expectation value as usual:

〈X〉 = 〈Φ0|X̂|Φ0〉 =

∫

dx xn(x), (2)

where n(x) is the one–particle density. The value of 〈X〉
scales with the system size, and the quantity of inter-
est is indeed the dipole per unit length, which coincides
with macroscopic polarization. The operator X̂, being
the sum of identical operators acting on each electronic
coordinate separately, is by definition a one–body opera-
tor. The expectation value of this same operator cannot
be evaluated if the wavefunction obeys PBC: in fact X̂
does not commute with a translation by L, and therefore
is not a legitimate operator in the Hilbert space defined
by Eq. (1).

We are now ready to state our main result, demon-
strated in the following. When PBC are adopted, the
position expectation value must be defined through:

〈X〉 =
L

2π
Im log 〈Ψ0|e

i 2π

L
X̂ |Ψ0〉. (3)

The expectation value 〈X〉 is thus defined only modulo L,
hardly a surprising finding since the wavefunction is peri-
odical. The operator occurring in Eq. (3) is a legitimate
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one in the Hilbert space of periodic wavefunctions; as a
tradeoff it is no longer the sum of operators acting on each
electronic coordinate separately, and is therefore a gen-
uine many-body operator. At variance with Eq. (2), the
expectation value 〈X〉 within PBC cannot be expressed
in terms of the one–particle density, not even in terms of
the one–particle reduced density matrix. The N -particle
wavefunction is explicitly needed.

What remains to be done is to prove that our defi-
nition of 〈X〉 provides the relevant physical observable
in the thermodynamic limit. Notice that L → ∞ is a
tricky limit, since the exponential operator in Eq. (3)
goes formally to the identity, but the size of the system
and the number of electrons in the wavefunction increase
with L [6]. We will show that the electronic polarization
(dipole per unit length) is:

Pel = lim
L→∞

e

2π
Im log 〈Ψ0|e

i 2π

L
X̂ |Ψ0〉, (4)

where e is the electron charge. It is expedient to intro-
duce the family of Hamiltonians:

Ĥ(α) =
1

2m

N
∑

i=1

(pi − h̄α)2 + V̂ , (5)

where α is a real constant, and V̂ is the many–body po-
tential. A parametric Hamiltonian of this kind was first
introduced by W. Kohn many years ago [7], and sub-
sequently used by different authors [8,3]. The ground
eigenstate of Ĥ(0) is precisely |Ψ0〉; more generally, the

state vector eiαX̂ |Ψ0〉 fulfills the equation

Ĥ(α) eiαX̂ |Ψ0〉 = E0 eiαX̂ |Ψ0〉, (6)

with an α-independent E0. This does not warrant that
it is an eigenstate since PBC, Eq. (1), are not fulfilled,
except in the special cases where α is a multiple of 2π/L.

Since by hypothesis E0 is nondegenerate, ei2πX̂/L|Ψ0〉
is the ground eigenstate of Ĥ(2π/L): we may then use
perturbation theory to expand it to leading order in 1/L
in terms of the eigenstates |Ψj〉 of Ĥ(0). However, the
standard formulas perform an arbitrary choice for the
phase of the perturbed eigenstate; in the most general
case we write instead:

ei 2π

L
X̂ |Ψ0〉 ≃ eiγL

(

|Ψ0〉 −
2πh̄

mL

∑

j 6=0

|Ψj〉
〈Ψj |P̂ |Ψ0〉

E0 − Ej

)

, (7)

where P̂ =
∑N

i=1
pi is the momentum operator. It is

important to realize that the perturbative expansion is
a good approximation whenever L is much larger than a
typical atomic dimension, while the number of electrons
in the wavefunction and the system size are irrelevant.

Replacement of Eq. (7) into Eq. (3) shows that the
phase γL is a most fondamental quantity, since:

〈X〉 ≃
LγL

2π
, (8)

but we have not yet related it to any observable. In
order to prove that e〈X〉/L for large L is indeed the elec-
tronic polarization—as anticipated in Eq. (4)—it will be
enough to show that its time derivative coincides with
the adiabatic electrical current flowing through the sys-
tem whenever the Hamiltonian contains a slowly varying
time–dependent term. We start from

d

dt
〈X〉 =

L

2π
Im

(〈Ψ̇0|e
i 2π

L
X̂ |Ψ0〉

〈Ψ0|ei 2π

L
X̂ |Ψ0〉

+
〈Ψ0|e

i 2π

L
X̂ |Ψ̇0〉

〈Ψ0|ei 2π

L
X̂ |Ψ0〉

)

, (9)

where |Ψ̇0〉 is the time derivative of the instantaneous
adiabatic eigenstate. Substituting now Eq. (7) in Eq. (9)
the phase factor cancels out; to lowest order in 1/L we
get

e

L

d

dt
〈X〉 ≃

ieh̄

mL

∑

j 6=0

〈Ψ̇0|Ψj〉
〈Ψj |P̂ |Ψ0〉

E0 − Ej
+ c.c. , (10)

where c.c. indicates the complex conjugate. In Eq. (10)
the j=0 term is omitted from the sum, since |Ψ̇0〉 can be
taken as orthogonal to |Ψ0〉 with no loss of generality; fur-
themore we have exploited time–reversal symmetry, ow-
ing to which all the adiabatic instantaneous eigenstates
Ψj can be taken as real.

This concludes our proof. In fact the right–hand mem-
ber of Eq. (10) is the electronic current flowing through
the system when the potential V̂ is adiabatically varied,
a well known expression due to Thouless: Eq. (2.5) in
Ref. [9]. The rest of this Letter is devoted to an analysis
of our major result, Eqs. (3) and (4), and of its relation-
ship to previous work.

The special case of N =1 corresponds to a lone quan-
tum electron diluted in a large sample. The position ex-
pectation value, Eq. (3), can then be expressed in terms
of the periodic density as:

〈X〉 =
L

2π
Im log

∫ L

0

dx ei 2π

L
xn(x). (11)

A similar expression has been previously used by a few
authors [10] in order to heuristically follow the adiabatic
time evolution of a single quantum particle in a disor-
dered condensed system within PBC. The case N > 1
is qualitatively different, in that—as stressed above—the
operator used in Eq. (3) to define 〈X〉 is a genuine many–
body one. This is particularly remarkable in view of the
fact that the physical observable is an integrated current:
the current is a typical one–body operator, as in fact is
the operator P̂ in the right–hand member of Eq. (10).
The case of independent electrons is also worth comment-
ing. In this special case the N -particle wavefunction is
uniquely determined by the one–body reduced density
matrix ρ(x, x′) (which is the projector over the set of the
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occupied one–particle orbitals): therefore the expecta-
tion value 〈X〉 is uniquely determined by ρ.

For the crystalline case, macroscopic polarization is
presently understood as a manifestation of the Berry
phase [4], both for independent electrons [1,2] and for
correlated electrons [3,5]. The definition of Eq. (4) re-
duces to the well established ones in the crystalline case:
for finite L the present findings can be shown to be equiv-
alent to a discretization of the line integral defining the
Berry phase. In this Letter we provide an explicit proof
for the independent–electrons case only: the correlated
case is not much different.

Suppose we have a crystalline system of lattice con-
stant a, where we impose PBC over M linear cells: there
are then M equally spaced Bloch vectors in the reciprocal
cell [0, 2π/a):

qs =
2π

Ma
s, s = 0, 1, . . . ,M−1. (12)

The size of the periodically repeated system is L = Ma.
The one–body orbitals can be chosen to have the Bloch
form:

ψqs,m(x+ τ) = eiqsτψqs,m(x), (13)

where τ = la is a lattice translation, and m is a band
index. There are N/M occupied bands in the Slater de-
terminant wavefunction, which we write as

|Ψ0〉 = A

N/M
∏

m=1

M−1
∏

s=0

ψqs,m, (14)

where A is the antisymmetrizer. It is now expedient to
define a new set of Bloch orbitals:

ψ̃qs,m(x) = e−i 2π

L
xψqs,m(x). (15)

We then recast the expectation value of Eq. (3), after a
double change of sign, as:

〈X〉 = −
L

2π
Im log 〈Ψ0|Ψ̃0〉, (16)

where |Ψ̃0〉 is the Slater determinant of the ψ̃’s. Accord-
ing to a well known theorem, the overlap amongst two
determinants is equal to the determinant of the overlap
matrix amongst the orbitals:

〈X〉 = −
L

2π
Im log det S, (17)

where

Ssm,s′m′ =

∫ L

0

dx ψ∗
qs,m(x)e−i 2π

L
xψq

s′
,m′(x). (18)

Owing to the orthogonality properties of the Bloch func-
tions, the overlap matrix elements vanish except when

qs′ = qs + 2π/L, that is s′ = s+1. The N×N determi-
nant can then be factorized into M small determinants:

det S =
M−1
∏

s=0

det S(qs, qs+1), (19)

where—in order to make contact with previous literature
[2]—for the small overlap matrix we use the notation

Sm,m′(qs, qs+1) =

∫ L

0

dx ψ∗
qs,m(x)e−i 2π

L
xψqs+1,m′(x),

(20)

and ψqM ,m(x) ≡ ψq0,m(x) is implicitly understood (so–
called periodic gauge). Replacing Eq. (20) into Eq. (4)
we get

Pel = −
e

2π
lim

L→∞
Im log

M−1
∏

s=0

det S(qs, qs+1), (21)

which concludes our equivalence proof. Eq. (21) coincides
in fact with the well known expression of the modern
theory of polarization [1,2], obtained by King–Smith and
Vanderbilt by defining a (continuum) Berry phase as a
line integral, and then discretizing it.

The discretization of the Berry phase was originally
introduced for purely computational purposes, and is
in fact routinely used in first–principles calculations [2].
The alternate path followed here to arrive at the same
result shows that the discretization has instead a very
basic meaning of its own. Macroscopic polarization can
be cast as the thermodynamic limit of an expression in-
volving the expectation value of a relatively simple and
physically meaningful many-body operator as in Eq. (4).
This operator “extracts” the Berry phase from the square

modulus of the many–body wavefunction, which embeds
the relevant information about the relative phases of the
one–particle orbitals.

Several previous findings about macroscopic polariza-
tion [1–3] apply to the present formulation as well: we
report here a few of them for the sake of completeness.
One is not interested in defining an “absolute” polariza-
tion: the measured bulk quantity is always the difference
∆P between two states of the given solid, connected by
an adiabiatic transformation of the Hamiltonian:

∆P = ∆Pnucl + ∆Pel =

∫ ∆t

0

dt J(t), (22)

where J(t) is the total (nuclear + electronic) current flow-
ing throught the sample while the potential V̂ is adiabat-
ically varied. Notice that in the adiabatic limit ∆t goes
to infinity and J(t) goes to zero. The quantity of inter-
est ∆P can be evaluated as a two–point formula, using
the initial and final states only: for the electronic term,
one evaluates Eq. (4) with both the final and the ini-
tial wavefunctions, and takes the difference. The result
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is only defined modulo e; a similar indeterminacy ap-
plies to the nuclear term ∆Pnucl. Nothing can be done
about this ambiguity of the two–point formula, which ul-
timately stems from Thouless’s quantization of particle
transport [9,8,11]. There is of course no indeterminacy
if one trades away the two–point formula and performs
instead the time integral in Eq. (22), using for the elec-
tronic current the right–hand term of Eq. (10).

Generalization of Eqs. (3) and (4) to the three–
dimensional case requires some care. Since 〈X〉 is ex-
tensive, within a näıf approach the x-component of ∆Pel

would be defined only modulo e/L2, which becomes van-
ishingly small in the thermodynamic limit. Fortunately,
the problem is less serious than this, and the drawback
is easily eliminated by adapting to the present formu-
lation a major finding from Ref. [3]. Suppose the sys-
tem is crystalline with a simple cubic lattice of constant
a. Then—upon exploiting the lattice periodicity of the
one–particle density—it can be shown that the two–point
formula provides each component of ∆Pel with an inde-
terminacy of e/a2, which is no serious drawback. Such
indeterminacy has nothing to do with electron correla-
tion, and not even with quantum mechanics: a similar
indeterminacy is also present in the classical nuclear term
∆Pnucl whenever this term is evaluated as a two–point
formula [12]. If the system is noncrystalline, then a large
“supercell” is needed to reproduce the disorder, and only
small polarization differences are accessible via the two–
point formula. Again, this looks like a fundamental con-
sequence of Thouless’s quantization of particle transport
[9,8,11].

The modern viewpoint about macroscopic polarization
[1–3] has even spawned a critical rethinking of density–
functional theory in extended systems. The debate
started in 1995 with a paper by Gonze, Ghosez, and
Godby [13], and continues these days [14]. Although the
subject is clearly outside the scope of this Letter, I point
out that the present main achievement—namely, defin-
ing the polarization of a many-electron system by means
of an expectation value—could possibly help in further
clarifying the matter.
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