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Abstract

We present a theory for the ab-initio computation of NMR chemical shifts

(σ) in condensed matter systems, using periodic boundary conditions. Our

approach can be applied to periodic systems such as crystals, surfaces, or

polymers and, with a super-cell technique, to non-periodic systems such as

amorphous materials, liquids, or solids with defects. We have computed the

hydrogen σ for a set of free molecules, for an ionic crystal, LiH, and for a

H-bonded crystal, HF, using density functional theory in the local density

approximation. The results are in excellent agreement with experimental

data.
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Nuclear magnetic resonance (NMR) is one of the most widely used experimental tech-

niques in structural chemistry. In particular, the chemical shift (σ) spectra are a fingerprint

of the molecular geometry and the chemical structure of the material under study. Although

the interpretation of these spectra generally relies on empirical rules, ab-initio calculations

of σ for molecules have led in many cases to an unambiguous determination of the micro-

scopic structure [1]. So far,ab-initio calculations of σ have been restricted to finite systems

such as isolated molecules or clusters [2,3]. This is a serious limitation, because most of

the NMR experiments are performed on liquid samples. Moreover, it is nowadays possible

to measure σ also in solids with the resolution required for structural determinations [4,5].

E.g., σ-spectra have been used for the characterization of amorphous carbon [6]. In this

letter, we present a formalism to compute, from first principles, σ in extended systems using

periodic boundary conditions. Our approach can be applied to periodic systems like crys-

tals, surfaces, or polymers and, using a super-cell technique, to non-periodic systems such as

amorphous materials, liquids, or solids with defects. In the case of the amorphous solid or

liquid, the atomic coordinates may be generated by ab-initio molecular dynamic simulations

[7,8].

The chemical shift measures the local magnetic field in a sample induced by a uniform

applied magnetic field. The computation of σ in an extended system is not straightforward,

since the expectation values of the individual terms of the perturbative Hamiltonian for

extended eigenstates are not well-defined quantities [9]. To overcome this problem, we follow

Ref. [10], in which a theory for the computation of the macroscopic magnetic susceptibility

is presented. In particular: i) we obtain the magnetic response to a uniform field as the

long-wave limit of a periodic field; and ii) we use a generalized f-sum rule to remove the

numerical instability which occurs in this limit. We apply the resulting equations to real

systems, describing the electronic structure within density functional theory (DFT) in the

local density approximation (LDA). We compute the hydrogen σ for a set of small molecules,

for an ionic crystal, and for a H-bonded crystal. Our results are in excellent agreement with

experimental data.

2



A uniform, external magnetic field Bext, applied to a sample induces an electronic current

density Jin(r). This current produces an induced magnetic field Bin(r). If Bext is small

enough, a condition realized in NMR experiments, then:

Bin(r) = −σ↔(r)Bext. (1)

Here σ↔(r) is the chemical shift tensor. With NMR spectroscopy, it is possible to measure

the symmetric part of σ
↔
(r), or more often its trace, σ(r) = (1/3)Tr[σ

↔
(r)], at the position of

the non-zero spin nuclei.

In the bulk of a periodic system, σ↔(r) is also periodic. We may write:

σ↔(r) =
∑

G

σ̃
↔

(G)eiG·r, (2)

where G are the reciprocal lattice vectors. For G 6= 0, σ̃
↔

(G) is a bulk property:

σ̃
↔

(G) = −4πχ↔(G, 0), (3)

where χ↔(G,G′) is the magnetic susceptibility matrix. However, forG = 0, σ̃
↔

(0) is not a bulk

property. Its value depends on the shape of the sample, and is determined by macroscopic

magnetostatic. In our calculations we assume a spherical sample, for which:

σ̃
↔

(0) = −
8π

3
χ↔(0, 0), (4)

where χ↔(0, 0) is the macroscopic susceptibility [11]. Thus the calculation of σ in a peri-

odic system requires the knowledge of χ
↔
(G, 0). We compute the macroscopic susceptibility

χ
↔
(0, 0) following Ref. [10]. The other elements of χ

↔
(G, 0) are computed as described below.

The susceptibility matrix is defined as the second derivative of the total energy with

respect to the external magnetic field. In particular,

b̂−G · χ↔(G, 0)b̂0 = −
∂2E[B]

∂B0∂B−G

∣

∣

∣

∣

∣

B=0

= −E ′′

0,−G, (5)

where E[B] is the total energy of the system per unit volume in the external magnetic field

B(r), B(r) = [B0b̂0 + B−Gb̂−G exp(−iG · r)], and b̂−G and b̂0 are vectors of unit length.
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Thus χ↔(G, 0) can be evaluated using perturbation theory. However the expectation values

of the perturbative Hamiltonians for a uniform field between extended eigenstates are ill

defined. To avoid this problem, we modulate the external periodic field with a finite wave-

vector q, B(r) = [Bqb̂q exp(iq · r) + B−G−qb̂−G−q exp(−i(G + q) · r)] [12], and we recover

the results for the uniform field by considering the limit [10]:

b̂−G · χ
↔
(G, 0)b̂0 = − lim

q→0
E ′′

q,−G−q. (6)

We now consider a spin compensated system described by a single particle Hamiltonian.

The derivatives of the Hamiltonian required to compute E ′′
q,−G−q are:

H ′

q =
−i

2

(

eiq·raq · ∇+ aq · ∇eiq·r
)

,

H ′

−G−q =
−i

2

(

e−i(G+q)·ra−G−q · ∇

+ a−G−q · ∇e−i(G+q)·r
)

,

H ′′

q,−G−q = aq · a−G−qe
−iG·r, (7)

where as = (is× b̂s)/(cs
2), and c is the speed of light. Using perturbation theory we obtain:

E ′′

q,−G−q= f(aq, a−G−q,G,q)

+2aq · a−G−q

∫ d3k

(2π)3
∑

i∈O

〈uk,i|e
−iG·r|uk,i〉, (8)

where |uk,i〉 is the periodic part of the Bloch eigenstate of the unperturbed Hamiltonian Hk

with eigenvalue ǫk,i, O are the sets of occupied bands, and

f(a1, a2,G,q) =
∫

d3r[h(a1, a2, r,q)

+h∗(a∗

1, a
∗

2, r,−q)]e−iG·r, (9)

where the integral is performed in the periodic cell, with

h(a1, a2, r,q) =
∫

d3k

(2π)3
∑

i∈O

[〈uk,i|r〉〈r|a2 · (−i∇ + k + q)|uq,a1

k,i 〉

+〈uk,i|a2 · (−i∇+ k)|r〉〈r|uq,a1

k,i 〉]. (10)
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|uq,a1

k,i 〉 is the first order change of the eigenstate |uk,i〉 due to a field with wavevector q. It

can be obtained by solving the linear system:

(ǫk,i −Hk+q)|u
q,a1

k,i 〉 = Qk+qa1 ·
(

−i∇ + k+
q

2

)

|uk,i〉, (11)

where Qk+q = (1−
∑

i∈O |uk+q,i〉〈uk+q,i|) is the projector onto the empty subspace.

The first term on the r.h.s. of Eq. (8) is obtained as second order perturbation with the

first order derivatives of the Hamiltonian H ′
q and H ′

−G−q. The second term in the r.h.s.

of Eq. (8) is obtained as first order perturbation with the second order derivative of the

Hamiltonian H ′′
q,−G−q. Since aq diverges as 1/q for q → 0, the two terms on the r.h.s.

of Eq. (8) individually diverge as 1/q. To remove this divergence, which would produce a

numerical instability, we use the generalized f-sum rule:

2a1 · a2

∫

d3k

(2π)3
∑

i∈O

〈uk,i|e
−iG·r|uk,i〉 = −f(a1, a2,G, 0). (12)

Substituting the f-sum rule into Eq. (8) we obtain: E ′′
q,−G−q = [f(aq, a−G−q,G,q) −

f(aq, a−G−q,G, 0)]. Then, for G 6= 0,

b̂−G · χ
↔
(G, 0)b̂0 = − lim

q→0
E ′′

q,−G−q

= −
∂

c2G2∂q
f(q̂× b̂0,G× b̂−G,G, qq̂)

∣

∣

∣

∣

∣

q=0

, (13)

where q̂ is the unit vector in the direction of q. Finally, the derivative with respect to q in

Eq. (13) can also be evaluated using the following limit:

b̂−G · χ
↔
(G, 0)b̂0 = − lim

q→0
[f(q̂× b̂0,G× b̂−G,G, qq̂)

−f(q̂× b̂0,G× b̂−G,G,−qq̂)]/(2qc2G2). (14)

Note that, for G 6= 0, χ↔(G, 0) is proportional to the first derivative of f with respect to q,

whereas the macroscopic susceptibility χ↔(0, 0) is proportional to the second derivative of f

with respect to q [10].

In practice, we evaluate numerically χ
↔
(G, 0) using Eq. (14) with a small, but finite q, and

the k-integral in Eq. (10) with a finite summation in the irreducible wedge of the Brillouin

zone.
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We describe the electrons using DFT-LDA; i.e., we neglect any explicit dependence of

the exchange-correlation functional (Exc) on the current density. The current dependence

of Exc could be taken into account using the approximate functional proposed in Ref. [13],

but in practice, this produces only negligible corrections to σ in real systems [3]. An ad-hoc

procedure to include many-body effects beyond DFT in the the calculation of σ has been

proposed in [14]. While this approach improves over DFT in small molecules, the corrections

to DFT vanish for periodic systems, where the eigenstates are always extended. In general,

to compute the second order variation in the DFT total energy with respect to an external

perturbation, one should take into account the linear variation of the Hamiltonian induced

by the linear variation of the charge δρ. However, if the perturbation is a magnetic field, δρ

is zero by time reversal symmetry. Thus Eq.s (7-14) are correct within DFT.

In the present calculation, we will consider the magnetic response of valence electrons

only. We describe the ionic cores by norm conserving pseudopotentials [15] in the Kleinman-

Bylander form [16]. This approximation does not affect σ of the nuclei without core electrons,

such as H [2,17], but those containing core electrons. In the latter case σ computed with

pseudopotentials differs from the one computed with an all-electron scheme by three dif-

ferent terms: i) the diamagnetic core contribution, which is independent of the chemical

environment; ii) a contribution due to the transitions from valence states to core states [10];

iii) a contribution due to the difference between the all-electron valence wavefunctions and

the pseudo wavefunctions in the core region. We found that, for first row atoms like carbon,

the error due to the pseudopotential is minor, since the terms ii) and iii) are usually much

smaller than the range of variation of σ with the chemical environment. In the present

paper, however, we present only the results for σ of H, which is not affected by the use of

pseudopotentials. Finally, in our pseudopotential calculation, we replace (−i∇ + k + q/2)

in Eq. (11) with (vp
k + v

p
k+q)/2, where v

p
k = (d/dk)Hp

k is the velocity operator, and Hp
k is

the pseudo-Hamiltonian [18].

We expand the wave-functions using a plane wave (PW) basis set. We obtain |uq,a1

k,i 〉

by solving Eq. (11) with a conjugate gradient minimization [19]; i.e., we never use the
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unoccupied eigenstates of Hp
k. We obtain f(a1, a2,G,q) from |uq,a1

k,i 〉 using fast Fourier

transforms. Thus, the computational effort to evaluate σ for all nuclei in the sample is

comparable to that required for a computation of the total energy [20]. We compute σ in

systems containing atoms of H, C, Li, and F. For H we use a local pseudopotential to speed

up the convergence with respect to the PW basis [21]. For C, Li and F atoms we use a

pseudopotential with a non-local s-projector, to describe the interaction of valence states

with the 1s core states. We use a PW energy cut-off of 100 Ry for the F atom, and of 70 Ry

for the other atoms. Molecular and crystalline structures are taken from experiments [22].

The results for the free molecules are obtained using super-cells, such that the error on σ

due to interaction between a molecule and its periodic replica is smaller than 0.1 parts per

million (ppm).

The results for a set of molecules are reported in Table I. All the computed values are

in excellent agreement with experimental data. The discrepancies are larger for C2H4 and

C2H2, in which a double and a triple C-C bond exist, respectively. This could indicate a

relatively larger inaccuracy of LDA in describing these types of bonds. Similar agreement

with experiments for the hydrogen σ in molecules is found in previous calculations [2,3].

The results for molecular and crystalline LiH are reported in Table II. LiH is an ionic

system, which crystallizes in the rock-salt structure. The Li-H equilibrium distance in the

crystal is significantly larger than that of the molecule. Our results show that the difference

between σ in the molecule and in the solid is very small. To verify if σ is sensitive to the

geometry, we consider a crystal at a pressure of 65 GPa, in which the Li-H distance is equal

to that of the molecule. In this case we find a much larger value of σ. Thus, σ of the crystal

and of the free molecule are only similar at the equilibrium geometries.

The results for molecular and crystalline HF are reported in Table III. The intra-

molecular bond of HF is covalent. In the liquid and solid phases, the HF molecules are

bonded together in zigzag chains via H-bonds. HF has the strongest H-bonding found in

nature. This strong inter-molecular bond is reflected in the large variation of σ observed in

the transition from the gas phase to the liquid phase, and in the large temperature depen-
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dence of σ in the liquid phase [24]. The HF crystal is constituted of a 2D stacking of parallel

1D zigzag chains. We compute σ for the crystal at the experimental geometries measured

for a DF crystal at two temperatures, 4.2K and 85K [25]. The computed σ in the free HF

molecule is in outstanding agreement with experimental data. In the crystal, the computed

σ decreases dramatically to a value close to the one measured in the liquid phase (we are not

aware of any experimental measurement of σ for solid HF). Also the theoretical variation of

σ with temperature, δσ/δT = 0.013 ppm/K, is very close to the one measured in the liquid,

which is dσ/dT = 0.0135 ppm/K [24]. Thus, with respect to σ, the behavior of the solid is

very similar to that of the liquid. Interestingly, a single H-bond does not account for the

large decrease of σ observed in the condensed phases. Indeed the computed σ for the central

H atom in a HF-HF dimer, is closer to the σ of the free molecule than to that of the liquid

[2].

In conclusion, we have presented an ab-initio theory for the evaluation of NMR chemical

shifts (σ) in extended systems. We have computed, for the first time, σ in real solids. Our

results show that DFT-LDA predicts hydrogen σ which are in excellent agreement with

experiment. The evaluation of σ requires the same numerical effort as the computation of

the total energy [20]. Thus, our approach can be applied to super-cells containing up to a

hundred atoms, which are sufficient to model liquids or amorphous materials [6–8].
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TABLES

σ-theory (ppm) σ-experiment (ppm)

H2 25.9 26.2a

CH4 30.7 30.61a

C2H6 29.7 29.86b

C2H4 24.5 25.43b

C2H2 28.6 29.26b

TABLE I. Computed and measured H chemical shifts (σ) for a set of free molecules.a Ref.

[23],b Ref. [24].

σ-theory (ppm)

LiH molecule d0 = 1.595 26.6

LiH crystal a = a0 = 4.08 26.3

LiH crystal a = 2d0 = 3.19 31.2

TABLE II. Computed H chemical shifts (σ) in LiH for a free molecule and a spherical crys-

talline sample (in the rock-salt structure). d0 is the equilibrium bond-length of the molecule, a

is the lattice constant, and a0 is the experimental equilibrium lattice constant. For a = 2d0, the

shortest Li-H distance in the crystal is equal to d0.
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T (K) σ-theory (ppm) σ-experiment (ppm)

HF molecule 28.4 28.5a

HF crystal 4.2 20.71

HF crystal 85 21.76

HF liquid 214 21.45b

TABLE III. Computed and measured hydrogen chemical shifts σ in HF for a free molecule, a

spherical crystalline sample, and a spherical liquid sample. T is the temperature. a Ref. [23],b Ref.

[24].
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