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Abstract

We exhibit a simple, systematic procedure for detecting and correcting errors

using any of the recently reported quantum error-correcting codes. The pro-

cedure is shown explicitly for a code in which one qubit is mapped into five.

The quantum networks obtained are fault tolerant, that is, they can function

successfully even if errors occur during the error correction. Our construction

is derived using a recently introduced group-theoretic framework for unifying

all known quantum codes.
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The past year has witnessed an astonishing rate of progress in the development of error-

correction schemes for quantum memory and quantum computation. The initial discovery

[1] that a qubit, when suitably encoded in a block of qubits, can withstand a substantial

degree of interaction with the environment without degradation of its quantum state, has

been followed by myriad contributions which have identified many new coding schemes

[2–13], considered their application in proposed experimental implementations of quantum

computation [14–16], and established the relationship of quantum error-correcting codes to

the preservation of quantum entanglement in a noisy environment [17]. The most recent

work has unified all the known quantum codes within a group-theoretic framework [18].

Throughout the developments of the past year, there has been a hope that these quantum

error-correcting codes would permit quantum computation to be done fault tolerantly. Such

an outcome was not guaranteed; in classical computation, the existence of error-correction

codes does not by itself ensure that logic can be performed using noisy gates. However,

one of us has recently established a complete protocol for performing fault-tolerant quan-

tum computation [19]. The protocol guarantees that, if the loss of fidelity of the quantum

state between the operation of one quantum gate and the next, due to both decoherence

and inaccuracy in the quantum-gate operation, is p, then the number of steps of quantum

computation which can be completed successfully is O(pa exp(b/pc)) (for some positive con-

stants a, b and c), a scaling law which appears very favorable for the ultimate physical

implementation of large-scale quantum computation.

This fault-tolerant protocol lays down specific rules for how to use the previously discov-

ered quantum error-correction codes. The class of codes first discovered by Calderbank and

Shor [2] and Steane [3] conform to these rules, and can be used fault tolerantly; however, it

has not been clear that the more efficient quantum codes which have been discovered more

recently (see, e.g., [18]) could be utilized in a fault-tolerant computation. In this note we

establish that errors in all known quantum error-correcting codes can be corrected in the

necessary fault-tolerant way. We first show explicitly how this is done in one of the simplest

efficient quantum codes, one which encodes a single qubit into five [4,17]. This result gives
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some interesting insights into the relationship between the different presentations of this

code which have recently appeared in the literature, and it shows that it is actually nec-

essary to use these different presentations to produce the fault-tolerant implementation of

the error-correction procedure. We then show, using the recently developed group-theoretic

framework for the quantum codes, that the protocol developed for the five-bit code can be

generalized to permit all known codes to be used for error correction in a fault-tolerant way.

We begin with a short review of the five-qubit error-correcting code as presented in [17].

Using this code, an arbitrary qubit |ξ〉 = α|0〉 + β|1〉 is represented by the five-qubit state

|ξ〉 = α|c0〉 + β|c1〉, where one choice of the “code words” is the pair of basis states

|c0〉 = |00000〉 (1)

+ |11000〉+ |01100〉 + |00110〉+ |00011〉 + |10001〉

− |10100〉 − |01010〉 − |00101〉 − |10010〉 − |01001〉

− |11110〉 − |01111〉 − |10111〉 − |11011〉 − |11101〉

and

|c1〉 = |11111〉 (2)

+ |00111〉 + |10011〉+ |11001〉 + |11100〉+ |01110〉

− |01011〉 − |10101〉 − |11010〉 − |01101〉 − |10110〉

− |00001〉 − |10000〉 − |01000〉 − |00100〉 − |00010〉.

When encoded in this way, the qubit can survive an interaction with the environment suffered

by any one of the five qubits. For purposes of error correction, it is sufficient to take the error

caused by the environment to be of three different types [5,17]: bit i may suffer a bit-flip

error, represented by the operator Xi acting on coded state |ξ〉; it may suffer a conditional

phase-shift error (Zi), or it may suffer both simultaneously (Yi). (We use the notation of

Refs. [11,18].) The right-hand column of Table I lists the 16 possible error processes P

(including the no-error case P = I). During error correction, the erroneous state P |ξ〉 is
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subjected to some quantum-computation operations (one- and two-bit quantum gates [20])

so that measurements on some of the qubits will reveal the identity of the error process P ,

without disturbing the superposition of code words. When the error process is determined,

the effect of P can be undone, returning the qubit to its undisturbed state |ξ〉.

It has now been shown by a number of authors [4,17,14] that there exist various quantum

circuits which perform the necessary error correction on the five-bit coded state. However,

none of them perform this error correction fault tolerantly (unlike the network of Fig. 1 which

can operate fault tolerantly). We call a quantum error-correcting network fault tolerant if it

can recover from errors during the operation of the network. Previous constructions are not

fault tolerant because they use two-bit quantum gates involving pairs of qubits within the

coded state. If an error occurs on one of these qubits before or during the operation of this

two-bit gate, the error will, in general, propagate to both of the qubits, and to yet others

if additional two-bit operations are performed. In the five-bit code, two errors are already

more than can be recovered from, so such two-bit gates must be avoided. The network

of Fig. 1 avoids them by using only two-bit gates which connect the coded bits to ancilla

bits a, so that, with small modifications, it can be made perfectly fault tolerant. These

modifications are described briefly in [19] and given in detail in [21].

To explain how the network of Fig. 1 works, we note that the code of Eqs. (1, 2) can

be presented in an infinite number of ways, all related by a change of basis of any one of

the five qubits. Even if we confine ourselves to bases in which the superpositions all involve

equal amplitudes as in Eqs. (1, 2), the number of alternative presentations is very large. One

important class of presentations is symmetric under cyclic permutation of the five qubits, as

in the example given above. We will define a particular symmetric presentation, S, as the

one in which |0〉 is coded as |c0〉 + |c1〉, and |1〉 is coded as |c0〉 − |c1〉.

Another class of presentation has been given in the work of Laflamme et al. [4]. Their

presentation is obtained by starting with presentation S and applying the one-bit rotation

R = 1√
2

(

1 1

1 −1

)

to qubits 0 and 1 (we number the qubits 0–4 as in Fig. 1). In this

presentation, the code words are
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|c′
0
〉 = |00010〉 + |00101〉 − |01011〉+ |01100〉 (3)

+ |10001〉 − |10110〉 − |11000〉 − |11111〉,

and

|c′
1
〉 = |00000〉 − |00111〉 + |01001〉+ |01110〉 (4)

+ |10011〉 + |10100〉+ |11010〉 − |11101〉.

We will call this presentation L3; except for a trivial relabeling of the qubits, this is exactly

the one given in [4]. The reason for the subscript is that, since the L3 presentation is not

symmetric under cyclic permutation, there are five distinct ones L0−4. The particular label 3

is used for this example because of an important property which this presentation possesses:

all the basis states of both the code words in Eqs. (3, 4) have even parity for the group

of four qubits 0, 1, 2, and 4. Thus, a convenient label for this presentation is the qubit

which is left out of this parity. Since an error can change this parity, we can learn one bit

of information about the error process by collecting up this parity into the ancilla qubit a

(done by the first four quantum XOR gates in Fig. 1), and performing measurement M3 on

a.

The remainder of the quantum circuit in Fig. 1 is self-explanatory. By passing in suc-

cession into three additional bases, those corresponding to the code presentations L4, L0,

and L1, three additional parity bits may be obtained in measurements M4, M0, and M1. (In

standard coding theory terminology, the outcome of these four measurements is called the

error syndrome.) As Table I indicates, these measurements uniquely distinguish the error

process P . This error can then be undone by returning the code to the original S basis and

selecting the appropriate one-bit operation U .

As presented, this error-correction network is not completely fault tolerant, because an

error occurring on one of the a bits can be transmitted back to one of the code qubits through

the action of the XOR gates. For instance, if a phase error occurs on the ancilla qubit a

between the second and third XOR gates in Fig. 1, the back action of the XOR gates results

5



in two phase errors in the state of the code qubits, rendering them uncorrectable. However,

as one of us has recently shown [19], the network may be made completely fault tolerant

by replacing the single-bit ancilla a by a set of four qubits, each of which is initialized to a

“cat” state |0000〉+ |1111〉. If the targets of each the XOR gates are four different qubits in

the cat state, then the parity of the measured state of the four ancilla bits gives the same

information as the measurements indicated in Fig. 1. However, the back-action that makes

the errors on the ancilla a dangerous is avoided. The ancilla errors may still result in a

mistake in the measured syndrome; we prevent this from adding errors to the coded state by

repetition of the entire network and syndrome measurement, before the one-bit operation

U is performed [19]. Once the correct syndrome has been confirmed, the correct U may be

applied [21].

The fact that the four measurements M3,4,0,1 completely distinguish the error process is no

accident; it is guaranteed by the group-theoretic structure of these codes [18,11]. In fact, the

procedure devised above can be generalized to give a fault-tolerant error-correction procedure

that covers every quantum code which is presently known, all of which are derivable as

eigenspaces of Abelian subgroups of a group E [22],

The group E is obtained by taking all products of the Xi, Yi and Zi operators introduced

above. Given an Abelian subgroup G of E containing 2g elements, the matrices representing

G can be simultaneously diagonalized (because they commute with each other). This yields

2g eigenspaces each of dimension 2n−g. Choosing any of these eigenspaces gives a quantum

code mapping n−g qubits into n qubits, and the error correction properties of this code can

be derived from the combinatorial properties of the subgroup G [11,18]. The subgroup G can

be generated by an independent set of g of its elements, which we call generators; again, these

generators are products of the Xi, Yi, and Zi operators. For instance, one of the generators

for the five-bit code in the S presentation is, in the notation of [18], X(11000)Z(00101); a

1 in the ith place in the X list means that Xi is included in the operation, a 1 in the Z list

means that Zi is included, and a 1 in both lists means that Yi is included.

Each such generator of G gives a prescription for one stage of fault-tolerant error cor-
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rection, as follows: First, a change of basis involving just one-bit operations is performed,

in order to place the generator in the form X(000...0)Z(z1z2z3...zn) where zi = 0 or 1 (i.e.,

so that the generator contains only Zi factors). The one-bit rotation required for the ith

qubit is easily determined: if Xi = 0 do nothing, if Xi = 1 and Zi = 0, apply R to the ith

qubit, and if Xi = Zi = 1, apply R′, where R′ = 1√
2

(

1 i
i 1

)

. After this change of basis, the

non-zero elements of the new Z bit string will be just those for which X or Z were non-zero

in the original basis. The next step of the error correction is to collect up and measure the

parity of the bits with non-zero entries in the Z string, using the ancilla technique discussed

above. Finally, undo the basis transformation. Repeat this procedure for each generator of

G.

It is guaranteed that this set of measurements will completely determine the error pro-

cess P . The measurement on a quantum state corresponding to one of the generator matrices

of G gives the eigenvalue of the quantum state with respect to that matrix, reducing the

number of eigenspaces which the quantum state might lie in by a factor of 2. Thus, if the

measurements are made for every matrix in a generator set for the subgroup G, this guar-

antees that the complete set of eigenvalues for this state with respect to the subgroup is

known. This complete set of eigenvalues places the quantum state uniquely in one of the

eigenspaces. The error processes Xi, Yi and Zi permute these eigenspaces [18], so knowing

which eigenspace a state belongs to is enough to uniquely determine the unitary transforma-

tion U of Fig. 1 which will correct the error. (U is also one of the unitary transformations

Xi, Yi or Zi.) The requirement that all the measurements be simultaneously observable can

be seen to be the physical justification for the requirement that all the generator matrices

commute.

The number of gates this construction gives for error correction of a quantum code can

be estimated. Suppose it is applied to a quantum code mapping k qubits into n qubits,

correcting t errors. (Many such codes have now been tabulated [12,18].) The syndrome

will contain n − k bits, and computing each bit of this syndrome requires at most n XOR

gates. Similarly, between 0 and n rotation gates will also be required before and after the
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computation of each of the bits of the syndrome. Thus, the number of gates required by

this technique for an n-qubit code is at most 2n(n − k + 1), and the number of ancilla bits

needed is no greater than n(n − k). The suitable use of this error-correction network will

be fault tolerant: up to t errors can occur during the error correction process itself without

irretrievably damaging the state of the k coded qubits.

The class of quantum error-correcting codes given in [2,3] have generators which are

either products only of Z’s or only of X’s. This technique applied to these codes thus

reduces to first finding the parity of sets of qubits corresponding to the generators composed

of Z’s, next applying the basis transformation R to each qubit, then finding the parities

corresponding to generators composed of X’s, and finally undoing the basis transformation

R on each qubit. This is exactly the prescription given by Steane [3]. For this class of codes,

the correction procedure for bit-flip (X) errors can be decoupled from the treatment of phase

(Z) errors. The bit-flip (X) errors affect the eigenvalues of matrices which are a product

of Z’s, and vice versa. Each type of error can be thought of classically (in the appropriate

basis) and corrected using classical techniques, as is emphasized in Steane [3].

To conclude, we have shown that the group-theoretic structure of all the reported quan-

tum error-correcting codes provides rules for designing very simple quantum networks to

detect errors and restore the quantum system to its undisturbed state. These networks are

superior to previously reported ones in that they can be implemented in a fault-tolerant

way. We note that our result does not provide a complete solution for how to use the most

efficient quantum codes in fault-tolerant quantum computation, since this would require a

fault-tolerant implementation of multi-bit gates on the coded qubits [19]. Such fault-tolerant

gate implementations are known for the non-optimal codes of [2,3], but it is not yet clear

that they exist for all the codes derived from the group E (however, see [13]). Even without

this, though, it is clear that the procedures developed here may ultimately have a variety of

applications for quantum memory, quantum communications, and quantum computation.

We would like to thank Rob Calderbank for helpful discussions.
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FIG. 1. Quantum network to correct for one-bit errors in the 5-bit code in the S presenta-

tion. Four different code presentations L3,4,0,1 are used in the different stages of error detection.

By a simple modification of the ancilla space a, and by appropriate repetitions of the syndrome

computation, this error-correction network can be made fault tolerant.
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TABLES

TABLE I. The four measurement outcomes in the fault-tolerant error correction, and the error

process P revealed by each.

M3 M4 M0 M1 P

0 0 0 0 I

0 0 0 1 Z4

0 0 1 0 X1

0 0 1 1 Z3

0 1 0 0 X3

0 1 0 1 X0

0 1 1 0 Z2

0 1 1 1 Y3

1 0 0 0 Z0

1 0 0 1 X2

1 0 1 0 X4

1 0 1 1 Y4

1 1 0 0 Z1

1 1 0 1 Y0

1 1 1 0 Y1

1 1 1 1 Y2
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