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Abstract

We present an ab initio approach for the computation of the magnetic sus-

ceptibility χ of insulators. The approach is applied to compute χ in diamond

and in solid neon using density functional theory in the local density approxi-

mation, obtaining good agreement with experimental data. In solid neon, we

predict an observable dependence of χ upon pressure.
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The response of an extended system to a uniform external magnetic field is a fundamental

property. This response can be used as a sensitive probe to the structural and electronic

properties of materials, such as in the case of nuclear magnetic resonance spectroscopy.

However, to our knowledge, the orbital magnetic susceptibility χ of real solids has not

been computed from first principles. In this work we discuss an ab initio approach for

the evaluation of χ in insulators within density functional theory (DFT). We applied our

formalism to diamond and solid neon using the local density approximation (LDA) for the

exchange and correlation energy. The agreement of our results with experimental data

indicates that DFT-LDA describes correctly the magnetic response of these systems.

The susceptibility χ has been evaluated in cubic semiconductors using empirical methods

[1]. Exact expressions for χ of a periodic solid in terms of Bloch eigenstates and eigenvalues,

have been derived already in the sixties [2–4]. However these approaches are rather involved

and have not been applied to real materials. A more compact expression for χ was recently

given in Ref. [5], where it is applied to a model 2-dimensional system. Our approach for the

computation of χ in real systems is related to the one of Ref. [5].

The paper is organized as follows. First we present the formalism for a generic single

particle Hamiltonian. Then we justify the use DFT in the LDA in the computation of χ,

and we discuss the accuracy and the limits of the additional use of the pseudopotential

approximation. Finally, we apply our formalism to diamond and solid neon, studying the

behavior of χ as a function of the lattice constant.

The magnetic susceptibility is defined as the second derivative of the total energy per

unit volume E with respect to the macroscopic magnetic field B, i.e.:

χij = − d2E

dBidBj

, (1)

where i and j are the Cartesian indexes. To simplify the notation in the following discussion,

we consider a cubic system for which χij = δijχ.

Perturbation theory can be used to compute χ. This is straightforward for a finite system.

However, in an extended solid, the expectation values of the perturbative Hamiltonian on
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delocalized eigenstates are not well-defined quantities for an uniform field. To avoid this

problem we consider the response of the system to a magnetic field with a finite wavelength

q = (q, 0, 0), i.e. B(x) = b(0, 0,
√
2 cos(qx)) = ∇ × A with A(x) = b(0,

√
2sin(qx)/q, 0).

Defining

χ(q) = −d
2E

db2
, (2)

in the limit of q → 0, we obtain the macroscopic susceptibility χ [4].

Let us first consider a system described by a single particle Hamiltonian. If the coupling

between B and the spin of the electron can be neglected, the perturbation to the Hamiltonian

can be written as ∆H = H(1) +H(2) with

H(1) =
1

c
p ·A =

√
2

c

sin(qx)

q
pyb,

H(2) =
1

2c2
A2 =

1

c2
sin2(qx)

q2
b2, (3)

where atomic unit are used, p is the momentum operator, and c is the speed of light.

For a periodic insulator we have:

χ(q)b2 = −4
Ω

c2

∫

d3k

8π3

∫

d3k′

8π3

∑

i∈O,j∈E

|〈ψk,i|H(1)|ψk′,j〉|2
ǫk,i − ǫk′,j

− 4

c2

∫

d3k

8π3

∑

i∈O

〈ψk,i|H(2)|ψk,i〉, (4)

where ψk,i and ǫk,i are the Bloch eigenstates and eigenvalues of the unperturbed Hamiltonian,

Ω is the volume of the unit cell, O and E are the sets of occupied and empty bands, and a

factor of 2 for spin degeneracy is included. By inserting Eq. (3) in Eq. (4), we get:

χ(q) = − 2

c2q2

∫

d3k

8π3
[g(k+ q,k) + g(k− q,k)]

− N

Ωc2q2
(5)

where N is the number of electrons per unit cell,

g(k′,k) =
∑

i∈O,j∈E

|〈uk′,i| − i∇y +
k′
y
+ky

2
|uk,j〉|2

ǫk′,i − ǫk,j
, (6)
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and |uk,i〉 is the periodic part of the Bloch eigenstate (normalized in the unit cell). For

q → 0, the two terms on the right-hand-side (rhs) of Eq. (5) individually diverge, but χ(q)

remains finite. To show this, we use the f-sum rule:

fs =
N

Ω
= −4

∫

d3k

8π3
g(k,k). (7)

By inserting Eq. (7) in Eq. (5) we obtain:

χ(q) = − 2

c2

∫

d3k

8π3

g(k+ q,k)− 2g(k,k) + g(k− q,k)

q2
. (8)

Then

χ = lim
q→0

χ(q) = − 2

c2

∫ d3k

8π3

d2

dk2x
g(k,k′)|k′=k. (9)

Similar conclusions have been obtained in Ref. [5].

In our numerical evaluation of the macroscopic χ we use Eq. (8) with a small but finite q.

Note that Eq. (5) is not suitable to this approach. Indeed, in a practical application, both

the integral in k space and the sum over all empty bands are replaced by finite sums. Under

these conditions the f-sum rule, Eq. (7), is no longer exactly satisfied. Then for q → 0 the

rhs of Eq. (5) will diverge as ∆fsc
−2q−2, where ∆fs is the the error in the f-sum rule. This

numerical instability does not occur in Eq. (8) where every term is treated consistently.

We computed χ using DFT-LDA, i.e. we neglected any explicit dependence of the

exchange-correlation functional on the current density. Ref. [6] proposes an approximate

functional for the exchange correlation energy Exc which depends also on the current. The

current term in Exc influences the magnetic response in systems with a small electronic

density. It is negligible in our case, since it yields a correction to χ smaller than 2% at the

electronic densities typical of the systems we are studying [6,7]. We also do not consider

magnetic local field effects, which are negligible in non-magnetic materials [8]. Finally, we

note that the DFT Hamiltonian depends in a self-consistent way upon the electronic charge

density. Thus, in general, to compute the second order variation in the total energy with

respect to an external perturbation, one should take into account the linear variation of the
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Hamiltonian induced by the linear variation of the charge δρ (see e.g. Ref. [11]). However,

if the perturbation is a magnetic field, δρ is zero by time reversal symmetry. Thus Eq. (8)

is correct within DFT.

In our present practical calculation we used the pseudopotential approach, in which

only the valence electrons are considered. To discuss the validity of the pseudopotential

approximation in the computation of χ, we divide the set of occupied bands O into the sets

of core bands C and valence bands V. Then we have:

χ = χC,E + χV ,E = χC − χC,V + χV ,E . (10)

Here χC,E is given by Eqs. (6) and (9) with the sum over the i and j indexes in Eq. (6)

running over the the sets of core states, C, and of empty states, E , respectively. The other

χ with two indices are define in a similar way. χC is the magnetic susceptibility of the core

electrons, which is not sensitive on the chemical environment and thus can be computed

considering the isolated atoms, i.e.:

χC = χC,E + χC,V ≃ − 1

Ωc2
∑

I

∑

i∈C

〈ΨI
i |x2|ΨI

i 〉, (11)

where we sum over the atoms in the unit cell, and ΨI
i are the core atomic wavefunctions of

the atom I. Among the three terms in the rhs of Eq. (10), χV ,E is the only one accessible in a

pseudopotential calculation; χC can be computed using an atomic code, but the evaluation

of χC,V requires the knowledge of both core and valence wavefunctions. Since χC,V and

χC are expected to be of the same order of magnitude, the pseudopotential approximation

introduces an error of the order of χC by neglecting χC,V . This error is reasonably small

only for elements in the first and second row of the Periodic Table, for which χC ≪ χ. For

application of the present theory to heavier elements, all-electron calculations are needed.

Finally, in our pseudopotential calculation, we replaced the operator −i∇ + k in Eq. (6)

with the velocity operator vp
k
= (d/dk)Hp

k
where Hp

k
is the pseudo-Hamiltonian [13].

We computed χ for isolated carbon (C) and neon (Ne) atoms, for solid Ne in the fcc

structure, and for solid C in the diamond structure. In the atomic phases we used the all-

electron ground state wavefunctions to compute χC using Eq. (11). In Ne we also computed
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the atomic χ using Eq. (11) with the sum over the index i running over all occupied states.

In the solid phases, we evaluated χV ,E using Eq. (8) with a q = .03π/a, where a is the lattice

constant of the cubic cell. The pseudopotentials were generated using the prescription of

Ref. [12]. In Ne we expanded the wavefunctions on a plane-wave basis set with a 120 Ry

cutoff. We sampled the k space integrals with 10 special k-points in the irreducible Brillouin

zone, and considered 400 empty states. In diamond we used a 60 Ry cutoff, 60 special k-

points, and 300 empty states. We verified that with the above parameters the convergence

error in the value of χ is less than 0.2%.

The results for Ne are shown in Table I. The atomic calculation is in good agreement

with the experimental data. For the solid fcc phase we report χV ,E as a function of the lattice

constant a. We note that χV ,E reaches a plateau for a ∼ ae0, where a
e
0 is the experimental

equilibrium lattice constant. This indicates that for a ≥ ae0 the interaction among Ne atoms

is negligible. Moreover χV ,E at a = a0 is very close to the value of χ computed for the

isolated atom. This establishes, in the atomic limit, the correctness of our approach and the

accuracy of the pseudopotential approximation. As a decreases, −χV ,E decreases. This can

be understood by noting that for an isolated closed shell atom only a negative diamagnetic

term contributes to χ, since the unperturbed Hamiltonian is spherically symmetric. As the

Ne atoms get closer, spherical symmetry is broken and a positive paramagnetic term also

contributes to χ. For the sake of comparison with future experiments, we also report the

theoretical pressure P as a function of a. Solid Ne at zero P is bonded by a weak van der

Waals interaction, which is incorrectly biven by LDA [14]. Thus for the larger a we do not

expect to obtain accurate values for P. However we expect LDA to describe correctly the

repulsive interaction between Ne atoms, which dominates P at smaller a. Note that at P=50

GPa, −χV ,E is decreased by 16% with respect to its atomic value.

The results for C are shown in Table II. Since C is not a closed shell atom, in the

atomic case only χC is reported. In the diamond phase we report χV ,E as a function of

the lattice constant a. The computed pressure obtained from the LDA-DFT total energies

is also shown. In the range of experimentally accessible pressures χV ,E shows a negligible
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dependence upon a. Both the values of χV ,E at the experimental (ae0) and at the theoretical

(at0) equilibrium lattice constant are in very good agreement with the experimental data.

In conclusion we have presented a method to compute the magnetic response of real solids

from first principles. We have shown that DFT-LDA reproduces the magnetic susceptibility

χ of diamond. In diamond χ is found to be insensitive to the applied pressure whereas we

predict an observable pressure dependence of χ in solid Ne.
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TABLES

TABLE I. Magnetic susceptibility of atomic and solid fcc Ne in units of 10−6cm3/mole. In the

solid we considered different values of the lattice constant a. We indicate with a
e
0 the experimental

equilibrium lattice constant. The theoretical pressure P is also reported.

−χ −χC −χV ,E P (GPa)

Atom (experiment) 7.2

Atom (theory) 7.80 .05

Solid a =8.37au= a
e
0 7.79 -2

Solid a =7.87au 7.76 -2

Solid a =7.37au 7.64 -1

Solid a =6.87au 7.41 4

Solid a =6.37au 7.14 15

Solid a =5.87au 6.66 50

Solid a =5.37au 6.04 151
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TABLE II. Magnetic susceptibility of atomic C and of diamond in units of 10−6cm3/mole of

C2. For the solid we considered different values of the lattice constant a. We indicate with a
e
0 and

a
t
0 the experimental and theoretical equilibrium lattice constants, respectively. The theoretical

pressure P is also reported.

−χ −χC −χV ,E P (GPa)

Solid (experiment) 11.8

Atom (theory) 0.32

Solid a =6.75au= a
e
0 11.17 -17

Solid a =6.66au= a
t
0 11.23 0

Solid a =6.55au 11.26 25

Solid a =6.35au 11.23 85

Solid a =6.15au 11.16 168

Solid a =5.95au 11.09 283
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