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We formulate the Kohn-Sham density functional theory in terms of nonorthogonal, localized or-
bitals. Within this formulation we introduce a simple and effective method to localize the orbitals.
Our approach leads to a plane-wave-based algorithm for total energy calculations whose computa-
tional complexity is of O(N), where N is the number of electrons. This opens the way to calculations
of unprecedented scale. Our method appears to be of general character and applicable in other con-
texts such as quantum chemical or projected quantum Monte Carlo calculations.

PACS numbers: 71.10.4+x, 71.25.Cx.

Recent years have seen considerable progress in the
scale and scope of electronic structure computations
based on density functional (DF) theory [1]. Total en-
ergy calculations and ab ¢nitio molecular dynamics (MD)
simulations [2] involving a few hundreds of atoms are now
performed in many laboratories.

Much of this progress is due to the use of pseudopoten-
tials and plane-wave (PW) basis sets, in conjunction with
iterative techniques for the solution of the Schrédinger
equation [3]. Very recently the use of parallel algorithms
has added further power to this approach [4, 5]. The
choice of PW expansions for the single particle orbitals
has several advantages. It permits the use of fast Fourier
transforms (FFT’s) which are computationally very effi-
cient; PW’s do not depend on atomic positions and there-
fore forces acting on atoms can be easily computed via
a straightforward application of the Hellman-Feynman
theorem. PW'’s are free of basis set superposition er-
rors and allow one to compute the total energy of differ-
ent atomic arrangements with the same accuracy. This
is particularly relevant in MD simulations, where rather
different atomic configurations are explored. Finally the
convergence of PW calculations can be controlled in a
very simple manner.

The disadvantage of PW expansions is the very large
number (M) of basis functions needed to represent the
electronic orbitals; M is proportional to the number of
electronic states N. In large scale applications, M is so
large that straightforward diagonalization is not possible
and use of iterative techniques to obtain the lowest N
eigenvalues is necessary.

Two are the basic steps of iterative diagonalizations:
The evaluation of H;, namely, the application of the
Hamiltonian H to the N orbitals v;, and the orthogonal-
ization of the ,;’s. If a split-operator technique is used,
and the properties of convolutions [3] and of the localized
nature of the pseudopotential operators [6] are taken into
account, the computational cost of Hy; can be reduced
to O(NMlog(M)). The dominant term is the orthog-
onalization step which scales as O(N2M) and therefore
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constitutes the real bottleneck of these calculations [3].
In principle, use of localized basis set might alleviate the
orthogonalization step, at the expense however of losing
the advantages of PW expansions.

In this Letter we propose a novel formulation of the
Kohn-Sham (KS) equations [1] in terms of nonorthogo-
nal localized orbitals, which are expanded in a PW ba-
sis set. The orbitals are localized with an efficient and
simple method. We demonstrate that a scaling of order
N Mlog(M) can be obtained with straightforward modi-
fications of existing iterative procedure: No orthogonal-
ization is needed and advantage is taken of the rapid
decay of the overlap and Hamiltonian matrix elements as
a function of distance, due to the localized character of
the orbitals. We then show how the goal of a PW-based
method of order V can be achieved by using only the
volume where the localized wave functions are different
from zero to expand the KS orbitals and to express the
total energy and potential.

In conventional approaches to DF-local-density calcu-
lations, the density matrix p is expanded in terms of sin-
gle particle orthonormal orbitals ;:

p(rx') = S 0i @ )to). 1)

This leads to the well known KS equations Hy; = €;9;,
where the Hamiltonian H = —-ZI-VZ + Vscr(r), and
Vscr(r) is the sum of the external, Hartree, and local
exchange and correlation potentials. Rather than repre-
senting p(r) as in Eq.(1), we introduce a set of nonorthog-
onal orbitals ¢; and write p as

plr,r') =) 61 (') S5 ¢5(r), (2)

1,3
where S;; = (¢;|¢;) . This is a legitimate representation
of the density matrix since p? = p and [p(r,r)dr =
N. The choice of the overlap matrix S is of course not
unique and needs to be specified. It is convenient to
introduce, together with the ¢;, their conjugate orbitals
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|6:) = > .S’j_ill¢j) which satisfy the relation (¢;|¢;) =
6i;. The total energy E of interacting electrons in the
field of a fully separable pseudopotential can be written
in such a form that all the relevant quantities depend
upon the product %*gb,-. In particular, the kinetic energy
Eyin is given by

Eyin = Z(E| ~ $V2|6s) (3)

2

and

plx) = D8 (1)ei(r). (@)

The Euler equations assoctitsd with the minimization of
E are obtained from 6E/é¢; = 0:

—H|¢:) + Y (sl H|or)|1) = 0. ()
l

Equation (5) can be recast into the standard KS
equations by applying the transformation |¢;) =
2 Si;l/ 2|¢j). A practical way of finding the minimum
of E is, e.g., to introduce a fictitious dynamics of the
type:

: 6F

i\r) = ———. 6

bi(r) o o) (6)
From Egs. (5) and (6) it is easily seen that S = 0. This is
true in principle, i.e., if Eq. (5) is integrated with infinite
precision. However, in practice a finite precision has to
be adopted to solve Eq. (5) and therefore numerical in-
stabilities may arise, leading to an ill-conditioned overlap
matrix as the iterative procedure is carried on.

This instability can be avoided by requiring that differ-
ent orbitals ¢; be localized in different regions of space.
As discussed, e.g., in Ref. [7], nonorthogonal functions
can be better localized than Wannier functions. Local-
ization can be obtained in different ways; in order to be
computationally efficient it should not imply the eval-
uation of the entire S matrix. In our calculations, we
have kept the orbitals localized in given regions of space
by adding to the Hamiltonian H the nonlocal potential

V =32 Vi1i)(@il, where
Vi= Al -6(R; — 1| - 0)]. (7)

A is the strength of the potential, R; the center of
the localization region (LR) of radius ¢ associated to
the state i, and 6 is a step function [8]. We note that
V|$i) = VE|#s), i.e., VF acts only on the state |¢;). The
presence of V brings in Eq. (5) additional terms, which
are, however, easily implemented and evaluated. The role
of V} is to break the symmetry among the infinite number
of S matrices which give rise to the same p, and to choose
the one built from maximally localized ¢;. An alternative
way of localizing orbitals (which we call a filtering proce-
dure) is that of multiplying the ¢; by 6(|R; —r| — o) at
each step, after Eq. (5) has been numerically integrated.
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Several wave functions can be associated to the same
LR, but in this case orbitals belonging to the same region
have to be kept mutually orthogonal. Clearly if A is
too large or o too small the introduction of V} does not
amount to a simple unitary transformation and leads to
unphysical results. However the V} can be engineered so
that they lead to total energies which are practically the
same as those obtained by conventional solutions of the
KS equations.

We have checked this to be the case for a system of
64 Si atoms in the diamond structure [9]. In our test
calculations we find a total energy which is the same as
that obtained in conventional computations within 1072
eV /atom. The same accuracy is achieved when a filtering
procedure is used to impose localization constraints. Two
different sets of R; have been tried. In the first one the
R coincide with the atomic positions, and there are two
occupied states per LR. In the second one the R; form a
uniformly spaced grid of points arranged in a bec lattice,
with each LR being singly occupied. The first choice is
physically more appealing, but introduces a dependence
of ¢; on the atomic positions which would lead to Pulay-
like forces in MD simulations. Such forces are absent in
the second case [10].

In the formulation presented so far, there are some
advantages such as the removal of the orthogonalization
step, which allows the use of unconstrained minimization
methods for the calculation of §E/6¢; = 0, and the im-
plementation of parallel codes, since the system is nat-
urally divided into subunits. However, no gain in the
scaling of the CPU time with N has yet been obtained.

This can be achieved by taking advantage of the local-
ized nature of ¢;. Indeed the S;; and H;; matrix elements
decay rapidly to zero as a function of (R;—R ), and need
to be computed only for |[R; — Rj| < no (n ~ 4-5). In
such a manner their evaluation scales as NM. |¢;) can
be obtained in N M operations as a solution of the sparse
linear system

Z Sijld;) = |4 8)

which is solved either with conjugate gradient techniques
or iteratively as (¢;)" = (1 — S)(¢:)"! + ¢; [11]. Simi-
lar considerations may be adopted for the calculation of
the nonlocal pseudopotential energy Eny. Alternatively
Eny can be evaluated as suggested in Ref. [6]. The dom-
inant part of the whole minimization procedure is thus
the evaluation of H|¢;), which scales as NMlog(M). We
note that the localization region of ¢, is larger than that
of ¢;; however, ¢, needs to be evaluated only at the points
where ¢; is different from zero, since all the relevant quan-
tities depend upon the product ¢,@;.

We have tested numerically the validity of our formula-
tion by performing a calculation on the same 64 Si atom
system [9] as before, but this time using for S;; and Hj;
the cutoff distances d¢y = 16 and d.,, = 20 a.u., re-
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spectively. The optimized energy differs once more from
that obtained in conventional calculations by a negligible
amount (1075 eV/atom).

We have also tested the scaling of the algorithm in
practice by performing a calculation on a 216 Si atom
system [9]. Its performance on vectorial machines is even
better than the theoretical one, due to improved perfor-
mances on longer arrays. The break-even point between
ours and a conventional approach is at about 64 atoms,
for Si. A further important facet of our scheme, which
becomes crucial for very large systems, is that it offers
considerable storage savings since ¢; need to be stored
only at the mesh points where they are significantly dif-
ferent from zero.

In the scheme presented so far, we have not fully ex-
ploited the localized character of ¢; and unnecessarily
used the whole volume (2) to expand the KS orbitals.
We are presently exploring various strategies to take full
advantage of the localization of ¢;. (Details of our for-
mulations and an account of their relative merits will be
presented elsewhere.) One can for instance form super-
functions which are obtained from the union of nonover-
lapping localized orbitals. The number of such super-
functions ng ~ N/[Q/(d.,:)3] does not vary as the size
of the system is increased. The cost of the FFT part is
therefore of O(ngM log M). The individual wave func-
tions, when needed, can be obtained in real space and
matrix elements evaluated in real space. Since ¢; are
localized, this is an O(V) operation.

Alternatively, one can define a region of space of vol-
ume , slightly larger then (d.,,)3, centered on the LR’s,
which contains all the points where ¢; differs significantly
from zero. This region (small mesh) is much smaller than
the cell volume and does not scale as a function of the

—1 otherwise.

7(R},_TW+L/2)={1ifR?—L/2—er’7<R}’+L/2—m

Here m is an arbitrary integer . We note that I' and
A are different from zero only for overlapping sites. The
role of I';; is to map onto 2, the points of overlapping
regions and to appropriately discard those of nonoverlap-
ping sites. Similar mapping and selection roles are played
by the functions A and A. We also note that the gener-
alized forces of Eq. (5) need to be computed only on the
small mesh points.

An analysis of the scaling of the method sketched above
shows it has a computational complexity of O(N). In
principle, the evaluation of S~! requires O(N?2) opera-
tions (S is a banded matrix); however, the number of
operations can be reduced to O(N), since for the con-
struction of p and Eyi, only the S—! matrix elements
between overlapping orbitals are needed [12]. For prob-
lems where the self-consistent calculation of p(r) is not
needed the same O(N) scheme can also be used. This

system size. Most operations can be performed on the
small mesh, and by an appropriate mapping ¢; can be
projected into the full mesh. The full mesh needs to be
used only when calculating the total charge density and
the potential. We give here the expressions for the cal-
culation of the key quantities in the case where the LR
length and the edge of the cubic total volume are L and
2L, respectively .

The overlap, kinetic energy Fxin = Eij S,-;l Ef,:l K ?j,
and density p = Zij Si; ! pij matrix elements are given by

S, = Ql /n 61(r)T15()$; (x) dr , (9)
Ky -g [ 200,02 0e,
pij = ¢;(r — aL) [[15(r — aL)A (r))]

X ¢;j(r —aL). (11)

a = 0 if r belongs to 2, and 1 otherwise. If we define
77 = R] —r" + L/2, we have

Tr() = [[0++EDvEDT (12)
n

Al (r) = T+ @S], (13)
£#n

As(r) =]+ (D@ -e)L -], (14)

where the products run over the Cartesian components
and

(15)

is the case, for instance, in the solution of Schrédinger
equations in an external potential or in calculations that
use the Harris functional [13] or atomic-orbital-based ab
initio MD [14].

Recently, two other schemes for total energy calcula-
tions which scale linearly with N have been proposed in
the literature [15,16]. The approach of Ref. [15] is based
on the division of a given system into independent sub-
systems connected through a common chemical potential,
and introduces certain approximations for the evaluation
of the charge density. The scheme proposed by Baroni
and Giannozzi [16] is instead an elegant implementation
of DFT without orbitals. This scheme becomes favorable
compared to conventional approaches for N of the order
of 1000. Both schemes, however, strongly depart from
conventional PW algorithms and their accuracy and ro-
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bustness especially for MD calculations is still to be es-
tablished. This has to be contrasted with the present
approach which mantains the advantage of conventional
PW calculations.

We believe that the algorithm described here has other
virtues besides its favorable scaling. Several different ap-
plications can be envisaged. For instance, divide-and-
conquer strategies are now possible and different parts of
a given system can be treated differently, if needed. In
a longer perspective the application of ideas from renor-
malization group to electronic structure calculations is
probably easier in the present framework. DFT calcula-
tions are not the only instances in which an automatic
generation of localized orbitals is desirable. The ap-
plication of our localization technique in multireference
self-consistent-field quantum chemical calculations can
lead to substantial reduction in the number of integrals
that need to be evaluated and to faster algorithms. An-
other field of interesting applications is projected quan-
tum Monte Carlo, which could be stabilized by suitable
extensions of our localization approach rather than by
more costly orthogonalization procedures.
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