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Strong Localization of Photons in Certain Disordered Dielectric Superlattices
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A new mechanism for strong Anderson localization of photons in carefully prepared disordered dielec-
tric superlattices with an everywhere real positive dielectric constant is described. In three dimensions,
two photon mobility edges separate high- and low-frequency extended states from an intermediate-
frequency pseudogap of localized states arising from remnant geometric Bragg resonances. Experimen-
tally observable consequences are discussed.

PACS numbers: 71.55.JV, 42.20.—y, 78.30.Ly

Since the pioneering work of Anderson' and Mott
considerable eff'ort has been placed on the observation of
electronic localization in disordered solids. An unequivo-
cal test of the scaling theory of localization, however,
has been hampered by the nearly inescapable presence of
electron-electron interactions and electron-phonon scat-
tering in real materials. Recently it has been suggest-
ed ' that the Anderson-localization transition may be
observed for electromagnetic waves propagating in

strongly scattering dielectric structures. Optical systems
provide an ideal experimental realization of a single
noninteracting excitation in a static random potential.
In dense random systems with a high dielectric mismatch
between scattering structures and background, it was
suggested that an intermediate-frequency window of lo-
calized states separates low-frequency extended states
exhibiting Rayleigh scattering from high-frequency ex-
tended states in which propagation is described by
geometric optics. More detailed treatments including
the vector nature of the photon and the possibility of
single-scattering Mie resonances have provided support
to this basic physical picture. From an experimental
point of view, however, the fundamental challenge lies in
the preparation of disordered dielectric microstructures
in which the predicted conditions for strong localization
of photons may be achieved. The basic mechanism for
renormalization of transport coeScients and localization
is the coherent backscattering of light. The existence of
this precursor to the Anderson transition has been
verified in a variety of weak-scattering systems. ' The
observed dependence of the polarization content and
backscattering line shape on sample geometries and ad-
sorption are in good agreement with theory. ' ' In all
of these systems, however, the elastic mean free path I is
at least an order of magnitude longer than the photon
wavelength k, thereby precluding any mobility-edge be-
havior for which it is required' that 2trl/X= l. Recently
Genack' has reported mean free paths 1 ~k in certain
titania microstructures. This unprecedented finding,
however, depends sensitively on the large-scale structural
arrangement of titania spheres. In these relatively dense
random systems, the dielectric spheres are optically con-

nected and single-scattering Mie-resonance theories are
inapplicable. It is the purpose of this paper to elucidate
instead the importance of large-sca1e geometric reso-
nances in disordered systems. Localization produced by
such geometric resonances is the result of a delicate in-
terplay between order and disorder. The most familiar
example of such a resonance is the Bragg scattering of
an electron in a perfect crystal. The utilization of this
mechanism by means of band-gap engineering in super-
lattices has led to novel applications in electronics. The
persistence of this mechanism in disordered systems is
evident from the existence of electronic band gaps or
pseudogaps in amorphous semiconductors. ' On the oth-
er hand, the application of this mechanism to photonics
has for the most part been restricted to one-dimensional
superlattices. Here it is well known that Bragg reflection
gives rise to forbidden frequency bands or stop gaps
where optical propagation cannot occur and the elec-
tromagnetic intensity decays exponentially with distance
into the medium. ' Recently, Yablonovitch has sug-
gested that a three-dimensional periodic array of dielec-
tric scatterers possessing such a gap may lead to the inhi-
bition of spontaneous emission. It is my hypothesis that
carefully prepared three-dimensional photonic superlat-
tices with moderate disorder may provide the key to the
predictable and systematic observation of strong locali-
zation of photons in nondissipative materials with an
everywhere real positive dielectric constant.

The occurrence of pseudogaps in the photon density of
states (DOS) necessitates a reinterpretation of the stan-
dard IoAe-Regel condition. Previously ' this condition
was derived with use of the approximation of a free-
photon density of states and perturbation theory for re-
peated single scattering from various dielectric spheres.
The disorder-averaging procedure, ho~ever, leads to a

smearing of any macroscopic geometric resonances. If,
instead, one treats these geometric resonances exactly
prior to the performing of a disorder average, then the
wavelength entering the Ioff'e-Regel condition must be
interpreted as the inverse of the fluctuation in the wave
vector from the Bragg plane rather than the free-photon
wavelength itself. Since this wavelength diverges at a
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band edge, localization is possible even for weak random-
ness.

The vector nature of the electromagnetic field has im-
portant consequences for the Bragg backscattering
mechanism. The existence of two helicity channels for
any given photon of wave vector k makes the realization
of band gaps or near gaps in three dimensions more
dificult than in the corresponding electronic problem
and leads to stronger restrictions on the minimum re-
quired fluctuation in the amplitude of the dielectric con-
stant. We consider the wave equation for the electric
field amplitude E for radiation of frequency co in an iso-
tropic disordered medium,

N M—V E+V(V E) — hatt„t(x)E =up
2

E.
C C

(I a)

Here eo is the mean value of the dielectric constant and
the fluctuating part ep„„=e~(x)+V(x) has two real
parts, the first which describes a Bravais superlattice,

F~ (x ) = E~QGUGe" 1(b)

and the second which is random and satisfies the statis-
tics (V(x)),„,=0 and (V(x) V(y))—:8(x —y). The sum-
mation in (Ib) runs over the reciprocal lattice jGj which
has the inversion symmetry UG=U G. An analogous
separation of periodic order and disorder is inherent in

tight-binding theories of disordered electronic systems.
The eAect of the periodic modulation on the photon spec-
trum may be estimated within a nearly-free-photon ap-
proximation. For right- and left-hand circularly polar-
ized photons of wave vector k in the vicinity of a single
Bragg plane the eAects of scattering into a degenerate
state of wave vector k —G are described by first-order
degenerate perturbation theory. Unlike scalar electrons
which may be described by a second-order deter-
minant, there is an additional degeneracy in the photon
helicity state as well as the possibility of helicity-flip
scattering. The resulting eigenvalue condition is

and

cp/c =k(Ep+ E/UG
~

I —G /2k
~

) (3b)

As an illustration we consider an fcc Bravais lattice for
which the first Brillouin zone is shown in Fig. l. A
severe depression in the photon DOS occurs for those
frequencies m which remain in the spectral gap between
the upper and lower branches of Eqs. (3a) and (3b) as
the wave vector k is allowed to span the surface of the
Brillouin zone. A more complete treatment would re-
quire special attention to those points along the zone sur-
face where two or more Bragg planes intersect. The ei-
genvalue equation corresponding to (2) would involve

fcc Bri IIouin zone

JZ. , G

a
I

/ao & l / 3

The associated photon dispersion relations are depicted
in Fig. I. At the center of the Bragg plane k=G/2 the
two branches (3a) and (3b) are degenerate, whereas if
the point k =G/J2 is accessible on the Brillouin-zone
surface it is apparent from (3b) that the gap is closed as
a result of the additional photon helicity channel. If we
set Up=1, it is also apparent from these solutions that
the lowest-frequency state of the upper branch ( —sign)
occurs at k=G/2 provided that e~/op~ —,', whereas for
higher-amplitude periodic modulations (e~/ep & —, ) the
corresponding minimum occurs along a circle defined by
the intersection of the Bragg plane with the sphere
k =G /(I+ ep/e&). The frequency at the bottom of the
upper branch then becomes

cp/c = (2c] ) G/(Ep+ e] ), e]/ep +

a(k) 0 I f—
0 a(k) f

I f f a (k ——G)
f I f 0—

I f—
0

a(k —6)
=0, (2)

ko = G /gl + eo /c,

where

cp/c =k(Ep+' E/UQ) (3a)

a(k)—:lk ' —ep(cp'/c ') ]/(ei Unco'/c')

and f=(I —cosO)/2 is the helicity-flip amplitude for
scattering from k to k —G by an angle 0. In general,
coso=(k —k 6)/~ k —G ~, whereas for k lying on the
Bragg plane defined by the reciprocal-lattice vector 6,
the helicity-flip amplitude f reduces to G /4k . Along
this Bragg plane, the solutions of the eigenvalue equation
(2) are

A
pol ar i zatlon

ko

—G/2 G/2

Bragg
p lane

FIG. 1. Creation of a circular photonic valley near the band
edge by the Bragg resonance of p-polarized light of wave vec-
tor ko+q in a high dielectric contrast e[/Eo fcc superlattice. q~,

q2, and q3 are principal axes for photon dispersion.
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sixth- and eighth-order determinants. However, since
these higher-degeneracy points constitute a set of consid-
erably lower measure than the bulk of the zone surface,
the qualitative aspects of the photon DOS may be de-
duced from the fourth-order determinant (2). More
realistic photon band structure will be discussed else-
where. Since at the extremal point 8 of the zone sur-
face depicted in Fig. 1, k =

—,', G & G /2, the gap be-
tween the upper and lower branches of (3b) is not closed.
In the vicinity of W, the lower branch of (3b) acquires a

frequency co/c = (5/12) ' G/(eo+ ei/5) '~ . The condi-
tion that this frequency lie below the bottom of upper
branch is ei/eo & 35 —2043=0.36. This latter restric-
tion on the amplitude of the dielectric mismatch is con-
sistent with the initial assumption that ei/eo & —,

' . The
reader may verify that if instead we considered ei/eo

the gap between the upper and lower branches of
(3a) and (3b) would in fact close as k spans the zone
surface for this particular (fcc) example. If we regard
the superlattice as consisting of an array of dielectric
particles of dielectric constant e, in a background dielec-
tric ei„ then the change of variables eo=(e, + eb)/2 and

ei = (e ep)/2 yields the condition e, /eb & 2. 13 for the
occurrence of a significant pseudogap structure in the
photon DOS. This latter condition is easily accessible in

the visible spectrum for Ti02, Ge, and Si microstruc-
tures. The perturbative introduction of disorder V(x)
now gives rise to localized states in the pseodogap region
as depicted in I. ig. 2. In the vicinity of the critical fre-
quency (4) the phase space available for photon propa-
gation is restricted to a set of narrow symmetry-related
cones in k space analogous to the pockets of electrons
near a conduction-band edge well known in semiconduc-
tor physics. Coherent backseat tering of light must
occur by means of disorder-induced scattering within
and between such valleys in phase space. The guiding of
photons along particular directions by this remnant of
the underlying superlattice geometry provides a powerful
mechanism for the strong localization of light.

The dispersion relation for photons just above the
spectral gap may be expressed in terms of the small devi-
ation q of the wave vector k from the point ko on the
Bragg plane for which ko =G /(1+ co/ei) (see Fig. 1).
The components of q along the principal axes G and g
are labeled q] and q2, respectively. The third component

q& tangent to the circle describes degenerate states and

DOS
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FIG. 2. Photon density of states in a disordered superlattice
exhibiting low-frequency Rayleigh scattering and high-fre-
quency geometric-optics extended states separated by a pseu-
dogap of strongly localized photons.

does not enter the dispersion relation at quadratic order
of the lowest photon branch (ei/eo & —,

' ):
co'/c' =Ec+/I, q i'+ W2q22, (5)

where

Ec=2ko/(eo+ ei),

& i
=—(2/ei ) [(eo'+ ei2)/(eo2 —ei') ],

and

3 p —= 2 (3 —eo/ei )/(eo+ ei ).

The presence of any randomness V(x) leads to a mixing
of all nearly degenerate photon branches. Among the
contributions to this disorder are frozen phonons, point
defects, line defects, and grain boundaries. Shorter-
wavelength components of the disorder result in interval-
ley scattering whereas longer-wavelength phonons lead
primarily to intravalley scattering. These effects invari-
ably lead to a smearing in wave-vector space of sharp
Bragg resonances as well as a filling in of the pseudogap
in the photon DOS. I postulate, however, that photons
near the band-edge frequency (4) retain certain general
features of the dispersion relation (5) and that the phase
space available for propagation is accordingly restricted.
The dynamics of both intervalley and intravalley scatter-

!
ing are described approximately by an effective
Schrodinger equation in wave-vector space,

2

(Wiqi'+A2QBW(k .q)+ g (I, d q'V(k, k')'P(k, '„q') = —Ec +(k„q).
valleys C

(6)

Here k =k, , +q (likewise for primed variables) and +(k,, , q) is the q Fourier transform of an envelope function +(k,, , x)
which multiplies the carrier-wave electric field eigenvector

Eo(k, , x)—:[pie'"' *+pze' ""' *]/W2
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describing Bragg scattering at the bottom of a valley v.

The polarization vectors p; lie in the plane of Bragg
scattering defined by k, , and k,,

—G, and are unit vectors
normal to the surface of the wave-vector cone depicted in

Fig. l. Integration over k,, in (6) is along the intersec-
tion of this cone with the Bragg plane. V is the matrix
element of the random potential V(x) between the actu-
al electric fields (product of carrier wave and envelope)
in the two states k and k'. Ensemble-averaged Green's
functions for Eq. (6) may be evaluated by standard tech-
niques. Perturbation theory in V(x) leads to a
disorder-induced shift of the band edge to a frequency

to/2c =Ec (Ec and a photon mobility edge which typi-
cally occurs between Ec and Ec (weak randomness).
There is also the possibility of nonperturbative contribu-
tions in the form of strongly localized photonic band-tail
states analogous to gap solitons in nonlinear materi-
als.

Photon transport near a mobility edge co+ may be de-
scribed according to the scaling theory of localization
in which the photon diA'usion coeScient

depends on the macroscopic length scale L of the sample.
Here / is the photon elastic-scattering mean free path
and c is an eAective velocity given approximately by the
speed of light divided by an eAective-medium refractive
index. Also, the coherence length g„h diverges as

~
to —

ttt+
~

' from the extended-state side as to

The average time of flight of a photon across a slab of
thickness L is given by r(L) =L /D(L). It is apparent
that in the critical regime (g„h)) L) this time of fiight
r-L rather than the classical diA'usion result r-L .
This critical slowing down of the photon due to incipient
localization may also be observable in long-time tails in

picosecond-pulse propagation. In particular the trans-
mitted pulse exhibits an exponential tail —exp[ —tt

&D(L)t/L ] in the long-time t ~ limit. Since the
distance x traversed by the photon in this nonclassical
random walk scales as x-t ', the optical-absorption
coefficient in the presence of a small imaginary part e2 to
the dielectric constant likewise scales as e2

In summary, it has been shown that strong localization
of photons may occur in a highly predictable manner in

a frequency window in certain disordered superlattice
microstructures of sufficiently high dielectric contrast.
These materials are the photonic analog of amorphous
semiconductors, in which the interplay between order
and disorder leads to the restriction of coherent back-

scattering to certain Bragg resonance channels. These
considerations should provide guidance in the experimen-
tal search for photon localization. Moreover, the utili-
zation of localization as a trigger mechanism for non-
linear or bistable response, as in the Kerr electro-optic
eAect, ' may lead to a number of useful device applica-
tions.

This work was supported in part by the National Sci-
ence Foundation Grant No. DMR-85-18163.

'P. W. Anderson, Phys. Rev. 109, 1492 (1958).
~N. F. Mott, Adv. Phys. 16, 49 (1967), and Philos. Mag. 17,

1259 (1968).
E. Abrahams, P. W. Anderson, D. C. Licciardello, and

T. V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979).
4S. John, Phys. Rev. Lett. 53, 2169 (1984).
SP. W. Anderson, Philos. Mag. B 52, 505 (1985).
K. Arya, Z. B. Su, and J. L. Birman, Phys. Rev. Lett. 57,

2725 {1986).
7P. Sheng and Z. Zhang, Phys. Rev. Lett. 57, 1879 (1986).
~C. A. Condat and T. R. Kirkpatrick, Phys. Rev. Lett. 58,

226 (1987).
Y. Kuga and A. Ishimaru, J. Opt. Soc. Am. A 1, 831

(1984).
' M. P. van Albada and A. Lagendijk, Phys. Rev. Lett. 55,

2692 (1985).
''P. E. Wolf and G. Maret, Phys. Rev. Lett. 55, 2696 (1985).
' S. Etemad, R. Thomson, and M. J. Andrejco, Phys. Rev.

Lett. 57, 575 (1986).
' E. Akkermans, P. E. Wolf, and R. Maynard, Phys. Rev.

Lett. 56, 1471 (1986).
'4M. J. Stephen and G. Cwilich, Phys. Rev. B 34, 7564

(1986).
'5F. MacKintosh and S. John, to be published.
'SA. F. IoA'e and A. R. Regal, Prog. Semicond. 4, 237 (1960).
'7A. Z. Genack, Phys. Rev. Lett. 5$, 2043 (1987).
' J. M. Ziman, Models of Disorder (Cambridge Univ. Press,

Cambridge, 1979).
' A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley,

New York, 1984).
E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).

~'S. John, Phys. Rev. B 31, 304 (1985).
2 N, Ashcroft and D. Mermin, Solid Stale Physics (Holt,

Rinehart, and Winston, New York, 1976).
23S. John and M. J. Stephen, Phys. Rev. B 28, 6358 (1983).
24S. John, C. Soukoulis, M. H. Cohen, and E. N. Economou,

Phys. Rev. Lett. 57, 1777 (1986).
25G. Watson, P. Fleury, and S. McCall, Phys. Rev. Lett. 58,

945 (1987).
W. Chen and D. L. Mills, Phys. Rev. Lett. 58, 160 (1987).

2489


