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We introduce an auxiliary quantum master equation dual fermion method (QME-DF) and argue
that it presents a convenient way to describe steady-states of correlated impurity models. The
scheme yields an expansion around a reference that is much closer to the true nonequilibrium
state than that in the original dual fermion formulation. In steady-state situations, the scheme is
numerically inexpensive and avoids time propagation. The Anderson impurity model is used to test
the approach against numerically exact benchmarks.

Since its theoretical conception [1] and the first ex-
perimental evidence of measurements on single-molecule
junctions [2], molecular electronics has challenged the-
ory for a proper description of response in open molecu-
lar systems far form equilibrium. Theoretical treatments
are often based on a perturbative expansion in a small
parameter, such as the strength of intra-molecular inter-
actions or molecule-contact couplings. The former can be
conveniently treated within the standard nonequilibrium
Green function (NEGF) technique [3, 4], while the lat-
ter are handled at the nonequilibrium molecular limit [5]
by many-body flavors of Green function (GF) method-
ology including pseudo-particles (PP) [6, 7] or Hubbard
NEGF [8, 9] techniques. These two limits account for
the majority of experimental measurements. For exam-
ple, inelastic electron tunneling spectroscopy [10] is usu-
ally treated within NEGF [11, 12], while Coulomb block-
ade [13], single molecule strong coupling in plasmonic
nanocavities [14] and coherent electron-nuclear dynam-
ics [15] require many-body local analysis [16, 17].

In the absence of a small parameter or when molecule-
lead correlations cannot be adequately described within
perturbation theory, theoretical treatment is more in-
volved. For example, this is the situation one encounters
in describing Kondo physics in molecular junctions [18–
24]. Theoretical methods for strongly correlated systems
include dynamical mean field theory (DMFT) [7, 25],
density matrix renormalization group (DMRG) tech-
nique [26, 27], scattering states-numerical renormaliza-
tion group approach [28, 29], flow equations [30, 31], mul-
tilayer multiconfiguration time-dependent Hartree (ML-
MCTDH) [32, 33], continuous time quantum Monte
Carlo (CT-QMC) [34–36] and others. These methods are
numerically demanding and are mostly limited to simple
models. DMFT, which assumes only that correlations are
local, is more general and is extensively used in simula-
tions of strongly correlated materials (extended systems).

One way to account for nonlocal correlations in ex-
tended systems is the dual-fermion (DF) approach [38].
We note in passing that besides the DF many other
studies extending DMFT beyond local correlations are

available in the literature. For a comprehensive review
see Ref. 39 and references therein. Originally, the DF
method was formulated for equilibrium systems [40, 41].
A nonequilibrium version of the method (DF-inspired su-
perperturbation theory) was later proposed in Ref. 37 as
a way to solve impurity/transport problems. An attrac-
tive feature of the latter formulation is its applicability
in the absence of a small parameter. At the heart of
the approach is a reference system, which includes the
molecule and a finite number of states representing leads.
Such finite problem can be solved exactly, though the
system-lead couplings are then only an approximation of
the original problem. DF introduces an auxiliary zero or-
der Hamiltonian around which standard diagrammatics
can be formulated. The resulting expansion accounts for
the difference between the true system-lead hybridization
and its approximation within the reference system (see
Ref. 37).

Where the steady-state is of interest, the nonequilib-
rium DF approach of Ref. 37 requires significant numer-
ical effort. Because only a few sites represent infinite
baths in the reference system, the hybridization func-
tion differs significantly from the true one. Furthermore,
the finite reference system necessarily yields periodic so-
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FIG. 1: Nonequilibrium junction model. Shown are (a) An-
derson impurity model; (b) Reference system within original
DF approach [37]; and (c) Reference system within auxiliary
QME-DF approach.
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lution, such that reaching the steady-state from the ini-
tially decoupled system and bath requires long time prop-
agation.

We propose to utilize the solution of an auxiliary quan-
tum master equation as a reference system for the DF
approach in steady-state (compare Figs. 1b and c). The
auxiliary QME yields a description of the hybridiza-
tion and nonequilibrium state of the system which is
much closer to the true solution than any finite reference
system. Furthermore, time propagation is completely
avoided. We note that the auxiliary QME has previously
been used as a DMFT impurity solver [42, 43]. Here, we
use it as a starting point for a more accurate DF impurity
solver.

Nonequilibrium DF. In the nonequilibrium DF ap-
proach (for details see Ref. 37 and Supplemental Mate-
rial [44]), one considers reduced dynamics of an open sys-
tem with interactions confined to the molecular subspace
and the effect of the leads entering via corresponding self-
energies. The effective action on the Keldysh contour
is [45]

S[d∗, d] =
∑
1,2

d∗1
[
G−10 − ΣB

]
12
d2 + Sint[d∗, d], (1)

where i = (mi, τi) (i = 1, 2) is the index incorporating
molecular orbital mi and Keldysh contour variable τi,
and the summation indicates sum over molecular orbitals
and integral over the contour variables. d∗i = d∗mi(τi)
(di = dmi(τi)) is the Grassmann variable corresponding

to creation (annihilation) operator d̂†mi(τi) (d̂mi(τi)) of
an electron in orbital mi in the Heisenberg picture [46].
G−10 is the inverse free GF [47][
G−10

]
12
≡ δ(τ1, τ2)

[
i
→
∂ τ1δm1,m2

−H0
m1m2

(τ1)
]
− Σirr12

(2)

=
[
− i
←
∂ τ2δm1,m2

−H0
m1m2

(τ2)
]
δ(τ1, τ2)− Σirr12 ,

and ΣB(τ1, τ2) is the self-energy due to coupling to con-
tacts [61]

ΣBm1m2
(τ1, τ2) =

∑
k∈B

Vm1kgk(τ1, τ2)Vkm2
. (3)

In Eqs. (2) and (3), H0
m1m2

(τ) is the non-interacting part
of the molecular Hamiltonian, Σirrm1m2

(τ1, τ2) ∼ δ(τ1, τ2)
is the irregular self-energy, Vmk is the matrix element
for electron transfer between molecular orbital m and
contact state k, and gk(τ1, τ2) ≡ −i〈Tc ĉk(τ1) ĉ†k(τ2)〉 is
the GF of free electron in state k of the contacts. All
intra-molecular interactions are within the (unspecified)
contribution to the action, Sint[d∗, d].

The DF approach is based on two important steps.
First, one introduces an exactly solvable reference sys-
tem with baths represented by a finite number of states.
Its known action S̃[d∗, d] has the same general form (1)

with true self-energy ΣB substituted by its approximate
representation Σ̃B . The desired action S can then be
written as

S[d∗, d] = S̃[d∗, d] +
∑
1,2

d∗1
[
Σ̃B − ΣB

]
12
d2. (4)

Second, direct application of standard diagrammatic ex-
pansion around the interacting reference system is not
possible, because the Wick’s theorem does not apply [48].
To resolve this, an artificial particle (dual fermion) is
introduced which is used to unravel the term via the
Hubbard-Stratonovich transformation [49]. Integrating
out molecular fermions (d and d∗) and comparing the
second order cumulant expansion of the resulting expres-
sion with the general form of action for dual fermions,
SDF [f∗, f ] =

∑
1,2 f

∗
1

[(
GDF0 )−1 − ΣDF

]
12
f2, one gets

(
GDF0

)−1
12

= −g−112 −
∑
3,4

g−113

[
Σ̃B − ΣB

]−1
34
g−142 , (5)

ΣDF12 =
∑
3,4

Γ13;24

[
GDF0

]
43
. (6)

Here g12 and Γ13;24 are the single-particle GF and
the two-particle vertex of the reference system, respec-
tively [4].

With
(
GDF

)
=
[(
GDF0

)−1 − ΣDF
]−1

known, the
single-particle GF of the molecule is obtained from

G =
(
δΣB

)−1
+
[
g δΣB

]−1
GDF

[
δΣB g

]−1
, (7)

where δΣB ≡ Σ̃B − ΣB .

Auxiliary QME. The choice of reference system is ar-
bitrary, but its ability to describe the physics reflects on
the accuracy of the associated DF approach. In this sense
a finite reference system (see Fig. 1b) may not be opti-
mal: its inability to represent dissipation and inevitably
periodic solution makes reaching the steady-state diffi-
cult. We propose using a reference with infinite leads,
with the majority of lead states treated implicitly (inte-
grated out) and a finite number included in an extended
molecule-lead system (see Fig. 1c). Effectively, this com-
plements choice of Ref. 37 with actual baths. We use a
Markovian QME,

dρS(t)

dt
= −iLρS(t), (8)

to simulate the extended system. Here, ρS(t) is the ex-
tended system density operator and L is the Liouvillian.
Our approach maintains all the advantages of Ref. 37
adding infinite baths, which results in a substantially
more accurate and less numerically expensive computa-
tional scheme. Below, we focus on steady-state, where
correlation functions depend on time differences, and
work in the energy representation.
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The nonequilibrium DF approach, Eqs. (5)-(6), re-
quires single- and two-particle Green functions of the ref-
erence system as an input. To provide these we utilize
the quantum regression relation [50]〈
Tc Â(τ1) B̂(τ2) . . . Ẑ(τn)

〉
= (9)

Tr
[
On U(tn, tn−1) . . .O2 U(t2, t1)O1 U(t1, 0) ρS(0)

]
Here ρS(0) is the steady-state density matrix of the ex-
tended system, U(ti, ti−1) is the Liouville space evolution
operator and times ti are ordered so that tn > tn−1 >
. . . > t2 > t1 > 0. Oi is the Liouville space super-
operator corresponding to one of operators Â . . . Ẑ whose
time is i-th in the ordering. It acts from the left (right)
for the operator on the forward (backward) branch of the
contour. The steady-state density matrix is found as a
right eigenvector |R0 � corresponding to the Liouvillian
eigenvalue λ0 = 0. Using spectral decomposition of the
Liouvillian, the evolution operator can be presented in
its eigenbasis as

U(ti, ti−1) =
∑
γ

|Rγ � e−iλγ(ti−ti−1) � Lγ |. (10)

For evaluation of single- and two-particle GFs, besides
the L of Eq. (8) we will also need Liouvillians L(±1) and
L(±2). These are evolution operator generators for Liou-
ville space vectors |S1S2 � with different number NS of
electrons in states |S1〉 and |S2〉. For example, for L(+1),
NS1

= NS2
+ 1 [62].

Using (10) in (9) yields expressions for the GFs of the
reference system (see [44] for details). Once single- and
two-particle GFs of the reference system are known, the
vertex required in (6) is given by

Γ13;24 = (11)∑
1′,2′

3′,4′

g−111′ g
−1
33′

[
g
(2)
1′3′;2′4′ − g1′2′ g3′4′ + g1′4′ g3′2′

]
g−12′2 g

−1
4′4.

Below we consider extended systems of size small enough
that exact diagonalization can be employed. For larger
systems more advanced methods (e.g. matrix product
states [51]) may be used.

Model. We apply the QME-DF method to the Ander-
son impurity model: junction is constructed from quan-
tum dot coupled to two paramagnetic leads each at its
own equilibrium (see Fig. 1a). The Hamiltonian is

Ĥ = ĤM +
∑

K=L,R

(
ĤK + V̂MK

)
, (12)

where ĤM =
∑
σ=↑,↓ ε0 d̂

†
σd̂σ + Un̂↑n̂↓ and

ĤK =
∑
k∈K

∑
σ=↑,↓ εk ĉ

†
kσ ĉkσ are Hamiltoni-

ans of the quantum dot and contact K and
V̂MK =

∑
k∈K

∑
σ=↑,↓

(
Vkd̂

†
σ ĉkσ + H.c.

)
describes

electron transfer between the dot and contact. The d̂†σ

(d̂σ) and ĉ†kσ (ĉkσ) creates (annihilates) electron of spin
σ on the dot and in state k of the contacts, respectively.
U is the Coulomb repulsion and n̂σ = d̂†σd̂σ.

Using Eq. (7) we calculate the GF

Gσ(τ1, τ2) = −i〈Tc d̂σ(τ1) d̂†σ(τ2)〉, (13)

and use it to evaluate the level population nσ, spectral
function Aσ(E), and current IL = −IR [52] in steady-
state

nσ = −i
∫
dE

2π
G<σ (E); Aσ(E) = − 1

π
ImGrσ(E),

IK =
∑
σ

∫
dE

2π

(
Σ<K(E)G>σ (E)− Σ>K(E)G<σ (E)

)
.

(14)

Here <, > and r are respectively lesser, greater and re-

tarded projections of the GF. Σ
≷
K(E) is the greater/lesser

projection of the self-energy due to lead K ∈ {L,R}. Fol-
lowing Ref. 53, we model the leads as semi-infinite tight-
binding chains with on-site energies εK and hopping pa-
rameter tK (K = L,R); the electron hopping between
the quantum dot and chain is tMK .
Numerical results. We compare the QME-DF ap-

proach to the Anderson impurity model with the origi-
nal nonequilibrium DF scheme and with numerically ex-
act tdDMRG and CT-QMC calculations. The former
were performed using ALPS-MPS [54, 55], while the lat-
ter utilize the Inchworm algorithm introduced in Ref. 34.
The units are set by the maximum total escape rate,
Γ0 = 2 t2ML/tL+2 t2MR/tR: in particular, we employ units
of energy, E0 = Γ0, time t0 = ~/E0, voltage V0 = E0/|e|
and current I0 = |e|E0/~. We show two flavors of the
QME-DF results: zero order, where one neglects self-
energy ΣDF , and first order, where the self-energy is eval-
uated using Eq. (6).

Unless stated otherwise, the parameters are as follows:
U = 5E0, ε0 = −U/2, tML = tMR = 0.79E0 and
tL = tR = 2.5E0. The positions of the on-site energies
in the leads, εK , are given by the corresponding chemical
potentials µK . The Fermi energy EF = 0 is taken as
the origin, and bias is assume dot be applied symmetri-
cally such that µL/R = EF ± |e|Vsd/2. The temperature
is zero. The QME-DF simulations are performed on en-
ergy grid spanning range from −12.5E0 to 12.5E0 with
step 0.0125E0.

Figure 2a shows QME-DF level populations n↑ = n↓ ≡
n0 under a bias Vsd = 2.5V0, at several level positions ε0,
evaluated directly in steady-state. In contrast, the inset
of Fig. 2a displays the corresponding time propagation of
the population following a molecule-lead coupling quench
simulation of Ref. 37, illustrating the difficulty of reach-
ing steady-state within the orginial nonequilibirum DF
approach. Figure 2b shows the current at identical pa-
rameters. In both panels of Figure 2, we compare the zero
(DF0, dashed line) with the first (DF, solid line) order
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FIG. 2: (Color online) Steady-state transport characteristics
vs. gate voltage at fixed bias. Shown are (a) population and
(b) current vs. level position, as calculated from auxiliary
QME (dotted line); and zero (dashed line) and first (solid
line) order QME-DF approaches. Circles (red) represent re-
sults of numerically exact tdDMRG simulations. The inset
in panel (a) shows the results of the original nonequilibrium
DF simulation, where at t = 0 coupling between system and
contacts is switched on for several level positions.

QME-DF approach, the auxiliary QME (QME, dotted
line) and numerically exact tdDMRG results at t = 8t0.
The first order QME-DF approach is quite accurate in
predicting both level populations and currents, while be-
ing substantially less expensive numerically than the orig-
inal DF formulation and having the added advantage of
direct access to steady-state.

In Figure 3, we consider current-voltage characteristics
in the particle-hole symmetric case, within the auxiliary
QME (dotted line), the zero (dashed line) and first (solid
line) order QME-DF. The latter is quite close to numeri-
cally exact tdDMRG (circles) and CT-QMC calculations
(squares). Interestingly, the first order QME-DF calcu-
lation with three auxiliary sites yields result similar to a
much more expensive six-site QME simulation (compare
with Fig. 3 of Ref. 43).

Finally, we consider spectral function: Fig. 4a shows
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FIG. 3: (Color online) Current voltage characteristics. We
show the auxiliary QME (dotted line), zero (dashed line) and
first (solid line) order QME-DF approaches. For comparison,
circles and squares represent respectively tdDMRG and CT-
QMC results.

results of equilibrium (Vsd = 0, solid line) and nonequilib-
rium (Vsd = 2.5V0, dtted line) simulations; Fig. 4b shows
the spectral function varying with bias. At low biases
equilibrium Kondo peak splits and follows corresponding
chemical potentials, while higher biases destroy the cor-
relation. Similar results were obtained in Refs. 28, 56–59.
Note that results in Fig. 4 are only qualitative represen-
tation of true Kondo physics, but equilibrium DF studies,
e.g., Ref. 40, have shown that accurate results in the cor-
related regime can be obtained efficiently by accounting
for higher order diagrams.

Conclusion. The nonequilibirum dual fermion ap-
proach introduced originally in Ref. 37 is a promising
method for simulating strongly correlated open systems.
Contrary to usual diagrammatic expansions in small
interaction (e.g., intra-system interaction in NEGF or
system-bath couplings in PP- or Hubbard NEGF), the
method can treat systems with no small parameter by
expanding around an exactly solvable reference system.
The choice of a finite reference system in the original DF
formulation cannot properly describe bath induced dissi-
pation and results in periodic dynamics, which, together
with the necessity to consider time propagation start-
ing from a decoupled initial state, complicates reaching
steady-state.

We proposed complementing finite reference system
with infinite Markovian baths and use auxiliary quan-
tum master equation to solve the reference problem. We
argued that the approach is advantageous in treating the
steady-states because it yields reference system which is
much closer to the true nonequilibirum state than that in
the original formulation. Also, infinite size of the mod-
ified reference system results in more accurate descrip-
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FIG. 4: (Color online) Spectral function of Anderson impurity
model. Shown are results of QME-DF simulations for (a)
The spectral function of the unbiased (Vsd = 0, solid line)
and biased junction (Vd/V0 = 2.5, dotted line); and (b) The
spectral function vs. energy and applied bias.

tion of bath induced dissipation. Finally, the approach
allows to avoid long time propagations necessary to reach
steady-state solution in the original formulation.

For the Anderson impurity model, we tested our ap-
proach by comparing QME-DF simulations with numeri-
cally exact tdDMRG and CT-QMC results. This showed
that the new scheme is both accurate and inexpensive.
Further development of the method and its application
to realistic systems is a goal for future research.
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