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Electrically tunable graphene plasmons are anticipated to enable strong light-matter interactions
with resonant quantum emitters. However, plasmon resonances in graphene are typically limited to
infrared frequencies, below those of optical excitations in robust quantum light sources and many
biologically interesting molecules. Here we propose to utilize near fields generated by the plasmon-
assisted nonlinear optical response of nanostructured graphene to resonantly couple with proximal
quantum emitters operating in the near-infrared. We show that the nonlinear near-field produced by
a graphene nanodisk can strongly excite and coherently control quantum states in two- and three-
level atomic systems when the third harmonic of its plasmon resonance is tuned to a particular
electronic transition. In the present scheme, emitter and plasmon resonances are nondegenerate,
circumventing strong enhancement of spontaneous emission. We envision potential applications for
the proposed nonlinear plasmonic coupling scheme in sensing and temporal quantum control.
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I. INTRODUCTION

Precise control over light-matter interactions on nano-
metric length scales presents opportunities in technolo-
gies such as light energy harvesting [1], optical biosensing
[2], and quantum information [3]. Plasmons, consisting of

∗Electronic address: joel.cox@icfo.eu

electromagnetic fields hybridized with collective charge-
carrier oscillations, are ideal for this purpose, as they
couple strongly with impinging light and can focus it into
nanoscale volumes [4, 5]. The interaction of enhanced lo-
cal fields produced by resonantly illuminated plasmonic
nanostructures with quantum emitters (QEs), such as
atoms or molecules (natural or artificial), is of particular
interest to the quantum optics and optical sensing com-
munities [6–8]. Typically, optimal coupling is achieved by
engineering the geometry of a noble metal nanostructure
so that a plasmon resonates with an electronic transition
in a proximal dipole emitter (e.g., an exciton in a quan-
tum dot). However, because noble metal plasmons can-
not easily be modified using external stimuli [9], resonant
light-matter interactions in noble metal-QE nanocompos-
ites typically lack the active tunability required by many
photonic device functionalities, and are further hindered
by large intrinsic Ohmic losses [10].
In its pristine form, graphene, the atomically thin

carbon layer, is a zero-gap semiconductor that presents
broadband 2.3% optical absorption from transitions be-
tween linear valence and conduction bands [11]. When
doped to a Fermi energy EF, Pauli blocking prohibits
vertical interband absorption for photon energies ~ω ≤
2EF, and graphene plasmons, consisting of coherently-
coupled virtual intraband transitions, emerge within this
gap. These resonances exhibit stronger confinement and
longer lifetimes than their noble metal counterparts, and
are readily tuned in an active manner via electrostatic
gating [12]. For these reasons, the interaction of plas-
monic near fields from highly doped graphene with proxi-
mal QEs has been predicted to enable observable vacuum
Rabi splittings [13], large Purcell enhancement factors
[14, 15], and electrical control of quantum states [16]. Un-
fortunately, even at high doping levels, plasmon energies
~ωp in graphene nanostructures appear in the infrared or
terahertz regimes, well-below the frequencies associated
with long-lived electronic excitations in robust quantum
light sources. Indeed, graphene structures with a char-
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acteristic size D exhibit localized plasmons at energies
scaling like ~ωp ∝

√
EF/D, which for achievable values of

EF < 1 eV and D > 10 nm have so far been demonstrated
at mid-infrared and lower frequencies. Additionally, cou-
pling to optical phonons persists as a strong source of
damping for plasmons at energies above ∼ 0.2 eV [17], as
do interband transitions unless ~ωp . EF [18].

The conical electronic dispersion of graphene imposes
anharmonic intraband charge-carrier motion, resulting
in an intrinsically nonlinear response to external elec-
tromagnetic fields, including efficient generation of odd-
ordered harmonics [19–25]. The synergistic combination
of a large optical nonlinearity and strong plasmonic near-
field enhancement, both arising from intraband transi-
tions in doped graphene, is currently motivating inten-
sive research efforts in the emerging field of nonlinear
graphene plasmonics [26–33]. In particular, 2D plasmons
in graphene nanostructures have been predicted to gen-
erate harmonics with efficiency above that of similarly
sized noble metal nanostructures [26].

In this work, we propose to harness plasmon-enhanced
harmonic generation in nanostructured graphene to cou-
ple the 2D material with a nearby QE, effectively bridg-
ing the energy mismatch between the electrically tunable
infrared graphene plasmon and a near-infrared excita-
tion in the emitter. We show that resonant excitation of
a localized graphene plasmon can reduce the impinging
light intensity required to generate a substantial third-
harmonic (TH) near field, which can be actively tuned
to the desired emitter resonance frequency by exploit-
ing the unique electro-optic response of graphene. For
the realistic parameters considered in this work, our sim-
ulations predict strong nonlinear plasmonic interactions
that can drive fluorescence in two-level atoms and elec-
tromagnetically induced transparency (EIT) or coherent
population control in three-level QEs. The present non-
linear coupling strategy can be used generally to probe
nonlinear plasmonic near fields [34, 35], while the electri-
cal tunability of graphene plasmons can be exploited to
control single-photon emission and actively manipulate
quantum states.

II. THEORETICAL MODEL

A prototypical hybrid molecule consists of a doped
graphene nanodisk with diameter D = 40nm and a two-
level QE located a distance d directly above its center,
the latter characterized by the dipole moment ~µ12 as-
sociated with the transition between states |1〉 and |2〉,
which we consider to be oriented parallel to the graphene
plane with magnitude 1 e× nm (∼ 50 Debye, commensu-
rate with quantum dot excitons [36]). We consider local,
isotropic dielectric media above and below the graphene
layer characterized by the permittivities εaω and εbω, re-
spectively. As illustrated schematically in Fig. 1(a), an
impinging light electric field Eext with frequency ω ≈ ωp
(red beam) generates a plasmon-enhanced TH near-field,

E33
ind(r, ω)e−i3ωt + c.c., around the nanodisk (blue field),

which we describe semianalytically by adopting a classi-
cal electrostatic eigenmode decomposition (see Ref. [32]
and Appendix). Electron dynamics in the QE is governed
by the density matrix master equation,

∂ρ

∂t
= − i

~
[H, ρ] + L[ρ], (1)

where H is the system Hamiltonian and L[ρ] denotes the
Lindblad superoperator accounting for decoherence. For
a two-level system we write the Hamiltonian

H = ~
∑
j=1,2

εj |j〉 〈j| − ~µ12 ·E(r, t)
(
|1〉 〈2|+ |2〉 〈1|

)
, (2)

with ~εj denoting the energy of the QE state |j〉. Defin-
ing the slowly-varying coherence elements ρ̃12 = ρ12ei3ωt

and ρ̃21 = ρ21e−i3ωt, we write the average QE transition
dipole moment as d(t) = ~µ12(ρ̃21ei3ωt+ρ̃12e−i3ωt). Then,
inserting Eq. (2) into Eq. (1) and using the expressions
for L[ρ] and E33

ind provided in the Appendix, the density
matrix equations of motion in the rotating-wave approx-
imation are found to be

∂ρ11

∂t
= Γ0ρ22 + i(Ω∗ +G∗ρ̃12)ρ̃21 − i(Ω +Gρ̃21)ρ̃12,

(3)
∂ρ̃21

∂t
=
(
i∆− Γ0

2

)
ρ̃21 − i(Ω +Gρ̃21)(ρ22 − ρ11),

where we adopt Γ0 = 1ns−1 as a phenomenological relax-
ation rate from the excited state |2〉 to the ground state
|1〉, ∆ ≡ 3ω − ε12 is the detuning of the TH near-field
from the QE resonance energy ~ε12 ≡ ~ε2 − ~ε1,

Ω = iσ(3)
3ω

3~ωεa3ωD
∑

m,m′,m′′,m′′′

ζ
(3)
mm′m′′m′′′

~µ12 · em
1− η(1)

3ω /ηm
(4)

×
~ξm′ ·Eext

1− η(1)
ω /ηm′

~ξm′′ ·Eext

1− η(1)
ω /ηm′′

~ξm′′′ ·Eext

1− η(1)
ω /ηm′′′

is the Rabi frequency quantifying the direct coupling of
the QE with the TH near-field produced by the 2D nanos-
tructure, and

G = iσ(1)
3ω

3~ω(εa3ω)2D4

∑
m

(~µ12 · em)2

1− η(1)
3ω /ηm

(5)

characterizes the self-interaction strength of the induced
QE dipole at frequency sω enabled by graphene. In the
above expressions,

em(r) =
∫
d2Rρm(R) r−R

|r−R|3
(6)

denotes the normalized electric field produced at r =
(0, 0, d) by integrating the so-called plasmon wave func-
tion (see Ref. [37] and Appendix) ρm(R) associated
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FIG. 1: Nonlinear atom-plasmon near-field coupling. (a) Illustration of a graphene nanodisk interacting with impinging
light at frequency ω (red beam) by generating a near-field at 3ω (blue field) that couples with a point-dipole quantum emitter
(QE) located a distance d above the disk center. Direct coupling of the third-harmonic (TH) near field with the QE is quantified
by a Rabi frequency Ω, while G characterizes the QE self-interaction enabled by graphene. (b) Energy-level diagram of the
graphene-QE hybrid: Light at frequency ω ≈ ωp drives plasmon-assisted TH generation in the nanodisk, producing a field
at 3ω that couples with a QE electronic transition of similar energy. For a D = 40nm-diameter nanodisk with a QE placed
d = 20nm above its center and cw light impinging normally to the graphene plane, we plot (c) Ω for various light intensities
and (d) G, as functions of optical frequency, with Fermi energies EF indicated by the color-coordinated curves. For the same
system, the (e) real and (f) imaginary parts of G are plotted over a wider range of emitter resonance energies.

with mode m over the 2D position vector R within
the graphene nanostructure. The dimensionless param-
eters η

(1)
sω ≡ 2iσ(1)

sω /sωD(εasω + εbsω) in Eqs. (4) and
(5), containing the dependence on the linear conductivi-
ties of extended graphene σ(1)

sω at frequency sω (calcu-
lated in the local limit of the random-phase approxi-
mation [18, 38]), yield resonant spectral features in Ω
and G at frequencies sω satisfying Re{η(1)

sω /ηm} = 1,
where ηm are modal eigenvalues, with strengths deter-
mined by the corresponding dipolar coupling parameters
~ξm =

∫
d2RRρm(R)/D3. TH generation is character-

ized by the local third-order conductivity of extended
graphene σ(3)

3ω , for which we adopt the analytical result
reported in Ref. [22], obtained quantum-mechanically in
the Dirac cone approximation, while ζ(3) is a third-order
coupling parameter (see Appendix). The conductivities
employed here, accounting for both interband and intra-
band electronic transitions in extended graphene at zero
temperature, combined with tabulated values of ηm, ~ξm,
and ζ(3), can faithfully reproduce the linear and nonlin-
ear polarizabilities of graphene nanostructures with sizes
& 10 nm predicted in fully-atomistic simulations [32].

III. RESULTS AND DISCUSSION

Nonlinear plasmonic near-field coupling between the
nanodisk and QE occurs when the transition energy ~ε12
and the plasmon energy ~ωp satisfy ε12 ≈ 3ωp, as indi-
cated in Fig. 1(b). The QE undergoes Rabi oscillations
at a frequency Ω, while the real and imaginary parts

of G contribute to a transition energy renormalization
and decay rate enhancement, respectively [39–41]. Us-
ing plasmon wave functions and eigenvalues tabulated in
Ref. [42] for a disk geometry, we plot Ω and G in Figs.
1(c) and 1(d), respectively, for a linearly polarized field
parallel to ~µ12 impinging on the QE-nanodisk system in
vacuum (εaω = εbω = 1). With realistic graphene param-
eters (Fermi energy EF ≈ 0.3–0.7 eV and 66 fs plasmon
lifetime, used throughout this work), a modest separa-
tion d = 20nm yields Rabi frequencies Ω & Γ0, indicat-
ing strong driving of the QE via plasmon-assisted TH
generation. Figures 1(c) and 1(d) show that the atom-
plasmon interaction at the TH can be electrically tuned
over a larger range of higher frequencies otherwise ob-
tained though linear coupling at the fundamental fre-
quency, while strong transition energy shifts (Re{G})
and decay rate enhancement (Im{G}) associated with
ωp (e.g., in a linear coupling scheme) are avoided at the
TH, where only weakly interacting, higher-order plasmon
modes play a role.
For the system considered in Fig. 1 under continuous-

wave (cw) illumination, we simulate the QE power ab-
sorption Pabs = Γ0~ε12ρ22 from the graphene plasmon
TH near-field by examining the steady-state density ma-
trix obtained upon numerical integration of Eqs. (3). In
Fig. 2(a) we plot the TH power absorption as a func-
tion of the impinging light frequency for different QE-
graphene separation distances d (upper panel) and light
intensities Iext (lower panel), maintaining EF = 0.5 eV in
graphene such that ~ωp = 0.2694 eV [see Fig. 1(c)] and
ε12 = 3ωp. Under these conditions, the QE resonance
does not interact directly with a plasmon mode of the
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FIG. 2: Power absorption via third-harmonic atom-
plasmon coupling. (a) We plot the steady-state power ab-
sorption in the QE for the system considered in Fig. 1 with
a fixed graphene doping EF = 0.5 eV (yielding a plasmon res-
onance ~ωp = 0.2694 eV for a disk of diameter 40 nm), as a
function of the illumination frequency when the QE resonance
frequency is ε12 = 3ωp. In the upper panel we plot PQE for
a fixed driving intensity Iext and various QE-graphene sep-
arations d, while in the lower panel we fix d and vary Iext.
(b) Graphene doping dependence for the system in (a) at the
resonance condition ~ω = ~ωp = ~ε12/3 = 0.2694 eV.

graphene nanodisk, although a persisting self-interaction
at the QE transition frequency, quantified by the parame-
terG, leads to enhanced decay rates and renormalized en-
ergies [39]: this interaction is proportional to the square
of the dipole coupling ~µ12 · em [see Eq. (5)] and yields
a blue-shifted and broadened power absorption peak at
small separations (e.g., d = 10nm) but rapidly disap-
pears with increasing separation distance, while the di-
rect TH near-field interaction, which depends linearly
on the dipole coupling, diminishes more slowly. In the
present nonlinear plasmonic coupling scheme, the TH
near-field enhancement of the QE excitation rate (Ω) is
independent of the self-interaction strength (G), unlike in
the degenerate plasmon-exciton coupling scheme, where
these competing phenomena are both maximized at the
plasmon resonance frequency [8, 43]. Under strong driv-
ing fields, the TH near-field produces a clear signature of
power broadening in the QE absorption spectrum [44],
leading towards optical bistability and hysteresis fueled
by the QE self-interaction [40]. In Fig. 2(b) we consider
a situation where the illumination frequency is fixed at
ω = ωp = ε12/3 and the TH power absorption is actively
controlled by tuning the Fermi energy EF (doping charge
density) in the graphene nanodisk.

The effective absorption cross-section of the hybrid sys-
tem, defined as Pabs/Iext, can reach values of approxi-
mately ∼ 0.06 nm2 (for Iext = 1GW/m2 at d = 15nm),
which is several orders of magnitude larger than the op-
timal cross-section of the dipole emitter in free space,
8πµ2

12ε12/~Γ0c ≈ 2.5 × 10−5 nm2, but significantly less
than the geometrical area of the graphene nanodisk.
We further remark that although these results are ob-
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FIG. 3: Nonlinear near-field electromagnetically-
induced transparency. (a) Schematic illustration of the V-
type QE-graphene nanodisk hybrid system interacting with a
strong driving field of frequency ω ≈ ωp ≈ ε12/3 and intensity
Iext along with an auxiliary probe field of frequency ωprobe.
(b) The nonlinear plasmonic TH near-field from the nanodisk
couples resonantly with the |1〉 ↔ |2〉 transition in the QE,
while the weak probe field (Ωprobe = 0.01Γ0 with detuning
∆ ≡ ωprobe − ε13) couples only with the |1〉 ↔ |3〉 transi-
tion. (c) For the parameters of Fig. 2, taking EF = 0.5 eV
and ~ω = ~ωp = ~ε12/3 = 0.2694 eV, we plot the probe field
absorption, characterized by the imaginary part of the QE
polarizability associated with the |1〉 ↔ |3〉 transition, as a
function of the detuning from resonance. In the upper (lower)
panel Iext (d) is fixed and d (Iext) is varied. (d) Same as (c)
but fixing ∆ = 0 while EF is varied.

tained for intense cw illumination, approaching the dam-
age threshold for graphene, qualitatively similar behavior
is expected for pulses of similar peak intensity and dura-
tions of several nanoseconds (i.e., with energy densities
falling well-below the damage threshold [45–48]).
The near-field produced by plasmon-assisted TH gen-

eration can be probed in an alternative manner by QEs
with more complicated energy-level structures. In a
three-level V-type atom, which we study in Fig. 3, EIT
[49] produces a dip in the absorption associated with one
atomic transition when the other is coupled strongly to
the TH near-field. This process is illustrated schemati-
cally in Fig. 3(a), where two external fields are applied
to the hybrid system and the ground state |1〉 is cou-
pled to two higher-energy states |2〉 and |3〉: we consider
ε12 = 3ωp, while the energy associated with the transi-
tion |1〉 ↔ |3〉 is arbitrarily far away from any promi-
nent features in the nanodisk spectrum [see Fig. 3(b)].
By probing the |1〉 ↔ |3〉 transition with a weak field
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Fermi energies EF = 0.50, 0.51, and 0.52 eV, with the transition energies ε12 and ε13 indicated by color-coordinated vertical
lines. (c) Time-evolution of the populations in states |2〉 and |3〉 for the configurations considered in (b). (d) Final metastable
state populations (at t = 10σ) plotted as functions of the peak pulse intensity (upper panel) and the Fermi energy (lower
panel).

(Ωprobe = 0.01Γ0) while resonantly coupling the |1〉 ↔ |2〉
transition with the TH near-field (i.e., ω = ωp = ε12/3),
an absorption dip at resonance is observed when the QE
and graphene nanodisk are in close proximity and/or the
graphene plasmon is strongly driven [see Fig. 3(c)]. The
active tunability of the graphene plasmon resonance can
be exploited to actively switch EIT on and off, as we
demonstrate in Fig. 3(d).

In Fig. 4 we seek to achieve electrical control of atomic
state populations using the graphene nanodisk TH near-
field. In this scenario, a QE with a lambda-type energy
level configuration is located above the nanodisk and
has orthogonal dipole moments associated with nearly-
degenerate |1〉 ↔ |2〉 and |2〉 ↔ |3〉 transitions [we as-
sume ∆ = 1meV; see Fig. 4(a)], which can be simultane-
ously driven by an optical pulse polarized 45◦ from each
of them [41]. We consider a Fourier-transform-limited
Gaussian pulse of FWHM duration σ = 130 fs, peak in-
tensity Imax, and carrier frequency ω, such that 3ω is ±∆
away from ε12 and ε13, respectively. The effective max-
imum TH Rabi frequency |Ω| for cw light at the peak
pulse intensity is plotted in Fig. 4(b) for various Fermi
energies, with the energies ~ε12/3 and ~ε13/3 indicated
by vertical lines. Clearly, an asymmetry in the Rabi fre-
quency driving the two nearly degenerate transitions can
be introduced by modifying the Fermi energy, resulting
in different levels of population transfer from the state
|2〉 to state |3〉 [Fig. 4(c,d)].

IV. CONCLUSIONS

In conclusion, we have demonstrated that plasmon-
assisted up-conversion in graphene nanostructures can
be used to resonantly excite a proximal QE, enabling en-
ergy transfer, EIT, or quantum state population control
that would otherwise be prevented by the energy mis-
match between infrared graphene plasmons and higher-
energy electronic transitions in QEs. This scheme can
also be used to probe the nonlinear optical response as-
sociated with graphene plasmons, potentially alleviating
the sparsity of experimental work in the field of non-
linear graphene plasmonics. While the combination of
an intrinsically-large nonlinear response and intense in-
plane electric field enhancement associated with local-
ized electrically tunable plasmons renders graphene an
ideal material platform for nonlinear near-field coupling,
this principle could be straightforwardly applied to other
plasmonic materials. We anticipate that the strategy pre-
sented here can be used to couple electrically tunable
graphene plasmons with higher-energy transitions in bi-
ologically interesting molecules and high-fidelity single
photon sources, opening a wide range of applications in
sensing and quantum nano-optics.
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Appendices
We provide details on the semi-analytical plasmon wave
function formalism used to describe the nonlinear plas-
monic near-field produced by an arbitrary 2D material
and its interaction with a proximal dipole emitter, sum-
marize the theory of plasmon-assisted third-harmonic
generation in a graphene nanostructure, and derive the
Bloch equations governing electron dynamics in the two-
and three-level atoms considered in the main text.

Appendix A: Basic concepts and approximations

In the main text we consider a hybrid molecule con-
sisting of a graphene nanostructure that occupies a finite
region in the R = (x, y) plane and a proximal quantum
emitter (QE) located at r = (x, y, z). The system is il-
luminated by an electromagnetic field Eext polarized in
the graphene plane and oscillating at frequency ω ∼ ωp,
where ωp is the resonance frequency associated with a lo-
calized plasmon mode supported by the graphene struc-
ture. Through an nth-order nonlinear optical process,
the graphene nanostructure generates a field Ens

ind(r) os-
cillating at a harmonic frequency sω (|s| ≤ n) that in-
teracts with the QE. In what follows, we describe the
nonlinear plasmonic near field generated by the graphene
nanostructure and its interaction with the QE in a semi-
analytical fashion by making the following simplifying
assumptions:

• The 2D graphene nanostructure under consideration is
much smaller than the light wavelength associated with
ωp, so that we can safely describe its response in the
electrostatic limit.

• The QE is characterized by a point dipole placed at r =
(x, y, z) with moment dsω and resonance frequency ∼
sω associated with the transition between two discrete
electronic states.

• The graphene optical response for each order n and fre-
quency sω is characterized by an isotropic conductivity
σ

(n)
sω in the local limit, which is a reasonable approxima-

tion when the in-plane light momenta are much smaller
than the involved electron momenta. This approxi-
mation is well justified for normally-impinging light
interacting with localized plasmon modes in deeply-
subwavelength 2D structures.

• The impinging light is sufficiently weak so that the op-
tical response of graphene is well described by pertur-
bation theory, maintaining zero electron temperature.

• The direct interaction of the external field with the QE
is negligible compared to the near field produced by the
nonlinear response of the graphene nanostructure.

• Inelastic scattering processes in the graphene nanos-
tructure are frequency-independent, and occur at a
phenomenological rate ~τ−1 = 10meV (τ ≈ 66 fs)
corresponding to a conservative electron mobility of
∼ 1300 cm2 V−1 s−1 at EF ≈ 0.5 eV.

Appendix B: Electrostatic description of nonlinear
plasmonic near-fields in 2D materials

In this section, we summarize the formalism presented
in Ref. [32], which is used in this work to describe the
nonlinear response of nanostructured graphene. To nth-
order, an isotropic 2D material responds to an in-plane
external field Eexte−iωt + c.c. by generating an induced
charge ρnsind oscillating at a harmonic frequency sω (|s| ≤
n) associated with the nonlinear 2D current jns through
the continuity equation,

ρnsind(R, ω) = − i
sω
∇R · jns(R, ω). (A1)

We express jns self-consistently as the sum of currents
produced by the direct nonlinear response to the total
electric field at ω (jnsNL) and the linear response to the in-
duced electric field at the generated frequency sω (Ens),
according to

jns(R, ω) = fR

[
jnsNL(R, ω) + σ(1)

sω Ens(R, ω)
]
, (A2)

where fR = 1 when R lies within the 2D material and is
0 everywhere else, effectively defining the structure mor-
phology. For a QE with a resonance frequency ∼ sω
positioned at a point r above the 2D material, the total
electric field oscillating at this frequency within the 2D
material becomes

Ens(R, ω) = −∇R

[
1
εasω

(R − r) · dsω
|R − r|3

(A3)

+ 1
εab
sω

∫
d2R′ ρ

ns
ind(R′, ω)
|R −R′|

]
,

with the first and second terms arising from the QE tran-
sition dipole moment dsω and the induced charge, respec-
tively. Here, εab

ω = (εaω + εbω)/2 denotes the average of the
dielectric functions for media above (εaω) and below (εbω)
the 2D layer.
Now, introducing the normalized 2D coordinate vec-

tor ~θ ≡ R/D, where D is the characteristic distance
in the 2D geometry (e.g., the diameter of a disk or the
side length of an equilateral triangle), we perform alge-
braic manipulations of Eqs. (A1-A3) to write the self-
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consistent current j̃ns ≡ jns/
√
f~θ as

j̃ns(~θ, ω) =
√
f~θ jnsNL(~θ, ω) (A4)

− σ
(1)
sω

εasωD
3

√
f~θ∇~θ

(~θ − r/D) · dsω∣∣~θ − r/D
∣∣3

+ η(1)
sω

∫
d2~θ′M(~θ, ~θ′) · j̃ns(~θ′, ω),

where η(1)
sω = iσ(1)

sω /sωεab
sωD is a dimensionless parameter

and

M(~θ, ~θ′) =
√
f~θf~θ′∇~θ ⊗∇~θ

1∣∣~θ − ~θ′∣∣ . (A5)

We identify M(~θ, ~θ′) as a real and symmetric operator as-
sociated with the 2D geometry defined by f~θ that admits
real eigenmodes ~εm(~θ) and eigenvalues 1/ηm satisfying∫

d2~θ′M(~θ, ~θ′) · ~εm(~θ′) = 1
ηm

~εm(~θ) (A6)

and forming an orthonormal basis, that is,∫
d2~θ ~εm(~θ)~εm′(~θ) = δmm′ . (A7)

Following the procedure of Ref. [32], we expand the solu-
tion to Eq. (A4) in a sum of the eigenmodes of M(~θ, ~θ′)
according to

j̃ns(~θ, ω) =
∑
m

ansm (ω)~εm(~θ). (A8)

Inserting Eq. (A8) into Eq. (A4), multiplying the result-
ing expression by ~εm′(~θ), and integrating over the 2D
coordinates ~θ, we make use of Eqs. (A6) and (A7) to
isolate the expansion coefficients

ansm (ω) = 1
1− η(1)

sω /ηm

[
bnsm (ω) + σ

(1)
sω

εasωD
3 dsω · em

]
,

(A9)
where we have introduced the nonlinear coupling coeffi-
cient

bnsm (ω) =
∫
d2~θ

√
f~θ ~εm(~θ) · jnsNL(~θ, ω) (A10)

and the normalized electric field generated by the mth

eigenmode of the 2D geometry

em(r) =
∫
d2~θ

~θ − r/D∣∣~θ − r/D
∣∣3 ρm(~θ) (A11)

in terms of the so-called plasmon wave function (PWF)
associated with it, ρm(~θ) ≡ ∇~θ ·

√
f~θ ~εm(~θ) [37]. In terms

of normalized coordinates, Eq. (A1) provides the induced
charge density ρnsind(~θ, ω) = −(i/sωD)

∑
m a

ns
m ρm(~θ),

from which we use Eq. (A9) to express the electric field
acting on the QE at r as

Ens
ind(r, ω) = i

sωεasωD

∑
m

em(r)
1− η(1)/ηm

(A12)

×

[
bnsm (ω) + σ

(1)
sω

εasωD
3 dsω · em(r)

]
.

The first term in the above expression describes the near
field produced by the 2D material oscillating at frequency
sω and generated directly by the external field at ω, while
the second term accounts for the field produced by the
QE dipole oscillating at sω. In practice, the PWFs ρm(~θ),
eigenmodes ~εm(~θ), and eigenvalues ηm of a given struc-
ture morphology are numerically computed once and for
all using an electrostatic solver. In the main text, the
PWFs and eigenvalues of a circular nanodisk are obtained
from tabulated data reported in Ref. [42]. From Eq.
(A12) we conclude that the coupling of the QE dipole
dsω with the TH near-field produced by the mth mode
of a 2D geometry is proportional to the scalar product
dsω · em(r), which is strongly dependent on the position
of the dipole. In Fig. 5, we study this coupling for a
dipole placed at a fixed distance away from the plane
occupied by a circular disk and oriented either parallel
or perpendicular to the polarization of the incident elec-
tric field. Evidently, maximal coupling should occur for
a dipole aligned with the external field polarization and
centered on the disk.
The 2D nanostructure response to a monochromatic

external field Eext(R, ω) is dominated by the linear self-
consistent field (i.e., n = s = 1),

E11(R, ω) =Eext(R, ω) (A13)

− 1
εab
ω

∇R

∫
d2R′ ρ

11
ind(R′, ω)
|R −R′| ,

where ρ11
ind is the induced charge given by Eq. (A1). Fol-

lowing Ref. [37], we write the linear current as j11 =
σ

(1)
ω E11, move to ~θ coordinates, and define the normal-

ized field ~ε (~θ, ω) ≡ D
√
f~θ E11(~θ, ω) to write

~ε (~θ, ω) = ~εext(~θ, ω) + η(1)
ω

∫
d2~θ′M(~θ, ~θ′) · ~ε (~θ′, ω).

(A14)
Expanding the solution to the above expression in the
eigenmodes of M(~θ, ~θ′) [see Eqs. (A5-A7)], we obtain the
normalized field

~ε (~θ, ω) =
∑
m

cm

1− η(1)
ω /ηm

~εm(~θ), (A15)

where the expansion coefficients are

cm =
∫
d2~θ ~εm(~θ) · ~εext(~θ, ω). (A16)

For plane-wave illumination normal to the graphene
plane, Eext(R, ω) is independent of R and Eq. (A15)
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FIG. 5: Spatial distribution of the plasmonic near-field. We plot the scalar product d ·e(r) produced by the lowest-order
dipolar mode of a 2D disk with diameter D (edge indicated by the black circle) in the R = (x, y) plane for a unit dipole d
positioned in the r = (x, y, 0.5D) plane and oriented either along the x direction (left panel) or y direction (right panel). The
impinging electric field is polarized along the x direction and the disk lies in the x-y plane.

yields the electric field

E11(~θ, ω) =
∑
m

−~ξm ·Eext

1− η(1)
ω /ηm

~ε (~θ)√
f~θ
, (A17)

where the dimensionless parameter ~ξm =
∫
d2~θ ~θ ρm(~θ)

characterizes the strength of the induced dipole [37]. The
in-plane near-fields given by Eq. (A17) depend on the
linear conductivity σ(1)

ω of the 2D material entering the
parameter η(1)

ω . For graphene doped to a Fermi energy
EF and an inelastic electron scattering time τ , we adopt
the local conductivity obtained in the random-phase ap-
proximation at zero temperature,

σ(1)
ω = ie2

π~2
EF

ω + iτ−1 (A18)

+ e2

4~

[
Θ(~ω − 2EF) + i

π
log
∣∣∣∣~ω − 2EF

~ω + 2EF

∣∣∣∣
]
,

with the first and second terms accounting for intra- and
inter-band optical transitions, respectively [38].

The plasmon-enhanced in-plane field at frequency ω,
given to linear order by Eq. (A15), drives the nonlinear
current jnsNL entering Eq. (A10), producing the near-field
described by Eq. (A12). For third-harmonic generation
(i.e., n = s = 3), the nonlinear source current is

j33
NL = σ

(3)
3ω

(
E11 ·E11

)
E11, (A19)

where σ(3)
3ω is the third-order conductivity characterizing

third-harmonic generation in the infinitely-extended 2D
material. Here, we adopt the analytical result reported
in Ref. [22], which is obtained from a local quantum-
mechanical description of graphene in the Dirac cone ap-
proximation at zero temperature. Inserting Eq. (A17)

into Eq. (A19), we thus obtain from Eq. (A10)

b33
m (ω) =− σ(3)

3ω

∑
m′m′′m′′′

ζ
(3)
mm′m′′m′′′ (A20)

×
~ξm′ ·Eext

1− η(1)
ω /ηm′

~ξm′′ ·Eext

1− η(1)
ω /ηm′′

~ξm′′′ ·Eext

1− η(1)
ω /ηm′′′

,

where

ζ
(3)
mm′m′′m′′′ =

∫
d2~θ

1
f~θ
~εm(~θ) · ~εm′(~θ)~εm′′(~θ) · ~εm′′′(~θ)

(A21)
is a unitless parameter. Mode dipoles ~ξm and eigen-
values ηm of a given structure morphology are numer-
ically computed once and for all using an electrostatic
solver. Throughout the main text we consider a circular
graphene nanodisk, for which the linear ~ξm and nonlinear
ζ

(3)
mm′m′′m′′′ dipolar coupling parameters for modes up to
order m ≤ 3 have been tabulated in Ref. [32].

Appendix C: Nonlinear 2D plasmon–quantum
emitter interaction

Electron dynamics in the two- and three-level quantum
emitters (QEs) considered in the main text is governed
by the Lindblad master equation for the time-evolution
of the density matrix,

ρ̇ = − i
~

[H, ρ] + L[ρ], (A1)

where H is the system Hamiltonian and L[ρ] denotes the
Lindblad superoperator accounting for decoherence. In
what follows, we consider that the QE states |i〉 with
energies ~εi form a complete and orthonormal set. This
allows us to express the density matrix as ρ =

∑
ij ρijσij ,
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where σij ≡ |i〉 〈j|, noting that the condition ρij = ρ∗ji is
guaranteed by the Hermitian property ρ† = ρ. Energies
and dipole moments associated with transitions |i〉 ↔ |j〉
are denoted by εij ≡ εj − εi and ~µij , respectively. For
simplicity we assume that all incoherent decay processes
occur at the same phenomenological rate Γ0.

1. Two-level atom

For a two-level QE with a ground state |1〉 and excited
state |2〉 interacting with the classical monochromatic
field E(r, t) = Ens

ind(r, ω)e−isωt + c.c., where sω ∼ ε12,
we insert the Hamiltonian

H = ~
2∑
j=1

εiσjj − ~µ12 ·E(r, t) (σ12 + σ21) (A2)

and the Lindblad operator

L[ρ] = Γ0

2 (2σ12ρσ21 − σ21σ12ρ− ρσ21σ12) (A3)

into Eq. (A1). Making use of Eq. (A12) and writing the
QE dipole moment as d(t) = ~µ12(ρ̃21e−isωt + ρ̃12eisωt),
where ρ̃21 = ρ̃∗12 = ρ21eisωt, the density matrix equa-
tions of motion in the rotating-wave approximation are
obtained as
∂ρ11

∂t
= Γ0ρ22 + i (Ω∗ +G∗ρ̃12) ρ̃21 − i (Ω +Gρ̃21) ρ̃12,

(A4a)
∂ρ̃21

∂t
=
(
i∆− Γ0

2

)
ρ̃21 − i (Ω +Gρ̃21) (ρ22 − ρ11) ,

(A4b)

where ∆ ≡ sω − ε12 is the detuning parameter,

Ω = i
s~ωεasωD

∑
m

bnsm (ω) ~µ12 · em
1− η(1)

sω /ηm
(A5)

is the Rabi frequency, which describes the direct coupling
between the QE and the nonlinear near-field produced in
the 2D material at frequency sω, and

G = iσ(1)
sω

s~ω(εasω)2D4

∑
m

(~µ12 · em)2

1− η(1)
sω /ηm

(A6)

quantifies the self-interaction of the induced QE dipole
at sω enabled by the 2D nanostructure.

2. Three-level V-type atom: Electromagnetically
induced transparency

For a V-type atom, we consider a QE with ground
state |1〉 and excited states |2〉 and |3〉 interacting with
the classical light field

E(r, t) = Ens
ind(r, ω)e−isωt + Eprobee−iωprobet + c.c., (A7)

where sω ∼ ε12 and ωprobe ∼ ε13, but |ε2 − ε3| � Γ0 (i.e.,
levels |2〉 and |3〉 are spaced far away from one another in
energy so that only Ens

ind couples with ~µ12 and only Eprobe
couples with ~µ13). In the rotating-wave approximation,
the Hamiltonian describing this system is

H = ~
3∑
i=1

εiσii −

 ~µ12 ·Ens
ind(r, ω)e−isωtσ21

+~µ13 ·Eprobee−iωprobetσ31
+h.c.

 , (A8)

and the Lindblad operator is

L[ρ] =
3∑
j=2

Γj
2
(
2σ1jρσj1 − σj1σ1jρ− ρσj1σ1j

)
, (A9)

where Γj is the decay rate of state |j〉 to |1〉. Inserting the
above expressions into Eq. (A1), we obtain the equations
of motion for the density matrix elements:

∂ρ22

∂t
=− Γ2ρ22 + i (Ω2 +Gρ̃21) ρ̃12 (A10a)

− i (Ω∗2 +G∗ρ̃12) ρ̃21,

∂ρ33

∂t
=− Γ3ρ33 + iΩ3ρ̃13 − iΩ∗3ρ̃31, (A10b)

∂ρ̃21

∂t
=
(
i∆2 − Γ2/2

)
ρ̃21 − iΩ3ρ̃23 (A10c)

− i (Ω2 +Gρ̃21) (ρ22 − ρ11) ,
∂ρ̃31

∂t
=
(
i∆3 − Γ3/2

)
ρ̃31 − iΩ3 (ρ33 − ρ11) (A10d)

− i (Ω2 +Gρ̃21) ρ̃32,

∂ρ̃23

∂t
=
[
i (∆2 −∆3)− (Γ2 + Γ3) /2

]
ρ̃23 (A10e)

− iΩ∗3ρ̃21 + i (Ω2 +Gρ̃21) ρ̃13,

where Ω2 = Ω [see Eq. (A5)], Ω3 = ~µ13 ·Eprobe/~, ∆2 ≡
sω − ε12, ∆3 ≡ ωprobe − ε13, and we have transformed
the coherence elements according to

ρ̃21 = ρ21e−isωt, (A11a)
ρ̃31 = ρ31e−iωprobet, (A11b)
ρ̃23 = ρ23e−i(sω−ωprobe)t. (A11c)

In practical calculations, we consider a resonant driv-
ing nonlinear near-field (i.e., ∆2 = 0) with a weakly-
driving probe field, such that Ω3 = 0.01Γ0, while set-
ting Γ2 = Γ3 = Γ0 for simplicity. Electromagnetically-
induced transparency is observed in the probe field ab-
sorption, which is proportional to Im{ρ̃31}, as the detun-
ing ∆3 is varied.

3. Three-level Λ-type atom: Temporal quantum
control

A Λ-type atom is characterized by two low-energy,
nearly-degenerate states |1〉 and |2〉 that are each op-
tically coupled to a higher-energy excited state |3〉. We
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study the interaction of the atom with a classical pulsed
laser field

E(r, t) = Ens
ind(r, ω)e−isωte−s(t−tp)2/2τ2

p + c.c., (A12)

where tp is the temporal center of the impinging pulse
and τp quantifies its duration, which is considered to be
much shorter than the QE excited state lifetime Γ−1

0 .
We define the energy half-splitting between states |1〉
and |2〉 as ∆ ≡ (ε2 − ε1)/2 and assume a scenario in
which the pulse carrier frequency is centered between
the transitions |1〉 ↔ |3〉 and |2〉 ↔ |3〉, such that
sω = ε13 − ∆ = ε23 + ∆. The system Hamiltonian is
then written in the rotating-wave approximation as

H =~
3∑
j=1

εjσjj − e−s(t−tp)2/2τ2
p (A13)

×
[
(~µ13σ31 + ~µ23σ32) ·Ens

ind(r, ω)e−isωt + h.c.
]
,

while we write the Lindblad operator as

L[ρ] =
2∑
j=1

Γj
2
(
2σj3ρσ3j − σ3jσj3ρ− ρσ3jσj3

)
, (A14)

where Γj denotes the decay rate of the excited state |3〉
to state |j〉. Assuming that the pulse bandwidth is much
larger than the energy splitting 2∆, we use the above ex-
pressions in Eq. (A1) to write the density matrix equa-
tions of motion as

∂ρ11

∂t
=Γ1ρ33 + i (Ω∗1 +G∗1ρ̃13) ρ̃31 − i (Ω1 +G1ρ̃31) ρ̃13,

(A15a)
∂ρ22

∂t
=Γ2ρ33 + i (Ω∗2 +G∗2ρ̃23) ρ̃32 − i (Ω2 +G2ρ̃32) ρ̃23,

(A15b)
∂ρ12

∂t
=2i∆ρ12 + i (Ω∗1 +G∗1ρ̃13) ρ̃32 − i (Ω2 +G2ρ̃32) ρ̃13,

(A15c)
∂ρ̃31

∂t
=−

[
(Γ1 + Γ2) /2 + i∆

]
ρ̃31 + i (Ω2 +G2ρ̃32) ρ21

+ i (Ω1 +G1ρ̃31) (ρ11 − ρ33) , (A15d)
∂ρ̃32

∂t
=−

[
(Γ1 + Γ2) /2− i∆

]
ρ̃32 + i (Ω1 +G1ρ̃31) ρ12

+ i (Ω2 +G2ρ̃32) (ρ11 − ρ22) . (A15e)

In the above expressions, we have defined

Ωj = ie−s(t−tp)2/2τ2
p

s~ωjεasωj
D

∑
m

bnsm (ωj)
~µj3 · em

1− η(1)
sωj/ηm

(A16)

and

Gj =
iσ(1)
sωj

s~ωj(εasωj
)2D4

∑
m

(
~µj3 · em

)2

1− η(1)
sωj/ηm

, (A17)

where sωj = εj3, and we have transformed the coher-
ence elements according to ρ̃j3 = ρj3e−isωt (j 6= 3). For
the calculations presented in the main text, we take the
transition dipole moments ~µ13 and ~µ23 to be orthogonal
and each oriented 45◦ degrees from the impinging field
polarization, so that in the absence of material disper-
sion (e.g., without plasmonic enhancement) each of the
transitions would be driven equally. For simplicity we set
all decay rates equal to Γ0.
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