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A general method is presented to calculate from first principles the full set of third-order elastic
constants of a material of arbitrary symmetry. The method here illustrated relies on a plane-wave
density functional theory scheme to calculate the Cauchy stress, and numerical differentiation of
the second Piola-Kirchhoff stress tensor to evaluate the elastic constants. It is shown that finite
difference formulas lead to a cancellation of the finite basis set errors, whereas simple solutions
are proposed to eliminate numerical errors arising from the use of Fourier interpolation techniques.
Applications to diamond, silicon, aluminum, magnesium, graphene, and a graphane conformer give
results in excellent agreement with both experiments and previous calculations based on fitting
energy density curves, demonstrating both accuracy and generality of our new methodology to
investigate nonlinear elastic behaviors of materials.

PACS numbers:

Third-order elastic constants (TOECs) are important
physical parameters characterizing the nonlinear elastic
behavior of a material [1]. Knowledge of TOECs allows
one to estimate long-wavelength phonon anharmonicities
[2], the generalized Grüneisen parameters [3], and the in-
trinsic mechanical strength of a material [1, 4]. In this
work, we present a general and accurate method to cal-
culate from first principles the full set of TOECs of a
material of arbitrary symmetry.

TOECs of bulk materials are typically obtained from
ultrasonic velocity measurements [5]. These experiments
are difficult and produce data with large error margins,
sometimes up to 50% or more [6]. In addition, TOECs
are far more structure sensitive than the second-order
elastic constants (SOECs), and sample quality is known
to introduce variability in the experimental data [2, 7–
10]. As a result, so far TOECs have been measured for
only a relatively few bulk materials [2, 7–10]. In recent
years, nanoindentation experiments have also been used
to probe linear and nonlinear elastic properties of 2D ma-
terials [11, 12]. Unfortunately, these measurements allow
to extract effective (or averaged) elastic moduli (for a 2D
material treated as a homogeneous and isotropic mem-
brane), whose relationships with the individual SOECs
and TOECs of the crystalline film are unclear [13] and
remain a topic of extensive research [12]. This exper-
imental situation demands for computational methods
to calculate and predict TOECs, particularly of materi-
als for which experiments cannot be easily or accurately
performed.

Methods are available to calculate TOECs from first
principles [9, 13–18]. These methods rely on the use of su-

percells and finite homogeneous deformations, an energy
scheme to calculate either energy-strain or stress-strain
curves, symmetry relationships to express the energy or
stress versus strain curves in terms of combinations of
SOECs and TOECs, and a fitting procedure to extract
the values of the independent SOECs and TOECs of the
crystalline material. Dating back to the work of Naimon
et al. [14], these methods have been applied mostly to
cubic [9, 17, 18] or hexagonal crystals [13, 15, 16]. More
recently, this type of method was also applied to a tri-
clinic crystal [9], reaching a satisfactory agreement with
the experimental data. Overall, this body of work has led
to identify two major pitfalls of these methods. First, fit-
ting energy-density (or stress) versus strain curves with
polynomials is an onerous operation, leading to results
that may vary depending on both the width of the in-
terval of strain values and the convergence of the density
functional theory (DFT) calculations. Second and most
important, these methods are applicable only to highly
symmetric crystals, for which the energy-strain or stress-
strain curves can be conveniently expressed in terms of a
selected number of independent elastic constants. Here,
we introduce a novel method based on first principles cal-
culations that is both accurate and applicable to a broad
class of systems, including 3D or 2D low-symmetry crys-
tals, as well as defected and inhomogeneous materials.

The present method relies on periodic DFT calcula-
tions and the application of finite homogeneous deforma-
tions to a supercell. In this context, we can define the
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deformation gradient Fij as:

Fij =
∂xi

∂Xj

= V ′

ikV
−1
kj , (1)

with the first equality providing the general definition
of Fij in terms of spatial (xi) and material (Xj) coor-
dinates, and where V

′ and V are 3×3 matrices whose
columns are the vectors ~a′1,~a

′
2,~a

′
3 and ~a1,~a2,~a3, defining

the geometries of the supercells and real space lattices
of the deformed and reference materials systems, respec-
tively. Within the framework of finite (or large) strain
theory, the symmetric Lagrangian elastic strain εij is de-
fined as [1]:

εij =
1

2
(FkiFkj − δij), (2)

with δij the Kronecker’s delta, whereas the internal en-
ergy U at fixed entropy to third order in strain is written
as follows:

U =
1

2!

∂2U

∂εij∂εlm
εijεlm +

1

3!

∂3U

∂εij∂εlm∂εpq
εijεlmεpq

=
1

2
C

(2)
ijlmεijεlm +

1

6
C

(3)
ijlmpqεijεlmεpq, (3)

where C
(2)
ijlm and C

(3)
ijlmpq are the SOECs and TOECs of

the material at the unstressed reference state. Cauchy
stress σij and second Piola-Kirchhoff (2nd-PK) stress Plm

are related to each other via the following equation:

σij =
V

V ′
FilPlmFjm, (4)

where V ′ and V are the volumes of the deformed and
reference supercells, respectively, and the 2nd-PK stress
tensor is written in terms of elastic constants and La-
grangian strain as [1]:

Pij = C
(2)
ijlmεlm +

1

2
C

(3)
ijlmpqεlmεpq. (5)

The equations above constitute the basis of our method
to calculate TOECs by using periodic DFT calculations.
In particular, we select the value of the Lagrangian strain
tensor, and we use Eqs. 2 and 1 to derive Fij and V ′

ik.
Then, we use a periodic DFT scheme to calculate the
Cauchy stress tensor of the supercell accommodating the
deformation. Equation 4 is then used to derive the 2nd-
PK stress tensor, and numerical differentiation of Eq. 5 is
carried out to calculate the values of both the SOECs and
TOECs. In particular, using Voigt’s notation (C

(2)
ijlm ↔

C
(2)
αβ and C

(3)
ijlmpq ↔ C

(3)
αβγ , where the Greek indices run

from 1 to 6, with xx → 1, yy → 2, zz → 3, yz → 4, xz →

5, xy → 6), the finite difference formula to calculate a
SOEC is:

C
(2)
αβ =

∂Pα

∂εβ
=

P
(+∆εβ)
α − P

(−∆εβ)
α

2∆εβ
, (6)

where P
(±∆εβ)
α is the component α of the 2nd-PK tensor

of the supercell accommodating the finite strain ±∆εβ.
To calculate TOECs, we have two cases. First, when at
least two out of three indices are equal, we can use:

C
(3)
αββ =

∂2Pα

∂2εβ
=

P
(+∆εβ)
α + P

(−∆εβ)
α − 2P

(0)
α

∆εβ
2 , (7)

where P
(0)
α refers to the component of the 2nd-PK stress

tensor of the unstressed reference material. Second, when
β 6= γ, we use

C
(3)
αβγ =

(

P
(+∆εβ ,+∆εγ)
α − P

(−∆εβ ,+∆εγ)
α −

P
(+∆εβ ,−∆εγ)
α + P

(−∆εβ ,−∆εγ)
α

)

/4∆εβ∆εγ , (8)

where the elements of the 2nd-PK tensor are com-
puted for a deformed supercell accommodating two types
of finite deformations, ±∆εβ and ±∆εγ . Equation 6
has been used to calculate SOECs from first principles
[15, 16]. Here, we show that second-order numerical dif-
ferentiation of the 2nd-PK stress tensor allows to design
an efficient, accurate, and general method to calculate
the full set of TOECs of a material from first principles
calculations. In this method, each elastic constant is cal-
culated independently, by using either Eq. 7 or Eq. 8,
by carrying out a minimal number of calculations. Sym-
metry relations can be exploited to reduce the number
of calculations or, as in the present work, to verify the
correctness of the method implementation. In the fol-
lowing, we validate and apply an implementation of our
method based on the use of a conventional pseudopoten-
tial plane-wave DFT approach [19]. All DFT calculations
here presented are carried out using primitive unit cells,
dense uniform meshes of k points to sample the Bril-
louin zones, norm-conserving pseudopotentials [20], and
a generalized gradient approximation for the exchange
and correlation energy functional [21]. In all calcula-
tions, atomic positions are relaxed and fully optimized
using a convergence threshold on the total force of 10−6

a.u. At the end of each calculation, ions occupy fixed
positions, and the temperature is 0 K. Further technical
details of the calculations are provided in the figure and
table captions.
To demonstrate the validity and accuracy of our

method, we consider the case of diamond, whose TOECs
have been repeatedly measured and calculated over the
past years [9, 10, 16]. Figure 1 shows the energy density
and component P1 ↔ Pxx of the 2nd-PK stress tensor of
a diamond crystal at 0 K under uniaxial strain in the x
direction. These energy and pressure data allow to cal-

culate C
(2)
11 and C

(3)
111 [9, 10, 16]. A fitting of the energy

curve gives values of 1037 GPa and -5876 GPa, respec-
tively. Identical results are derived from Eqs. 6 and 7
by using the values of P1 for the unstressed crystal and
those obtained with a percent uniaxial strain of either
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±0.5% or ±1% (Fig. 1). These results show that finite
differentiation of the 2nd-PK tensor is a viable technique
to calculate both SOECs and TOECs.

Periodic DFT schemes are based on expanding the
wavefunctions in terms of a truncated basis set, most
commonly a plane wave basis set [19, 22]. In plane-wave
based DFT methods, the stress tensor is calculated as
derivative of the energy at fixed number of plane waves
[15, 22], and not at fixed energy cutoff [23–25]. Conse-
quently, when using moderate plane-wave energy cutoffs,
the diagonal elements of the Cauchy stress tensor are
underestimated by the so-called Pulay corrective terms
[23–25]:

σp
ij = −

2

3

∂E

∂ lnEc

δij , (9)

where Ec is the plane-wave energy cutoff and E is the
energy per unit volume.

Figure 2 shows the value of C
(3)
144 of diamond obtained

by using Eq. 7 and employing stress tensors obtained
from DFT calculations of unstressed and shear strained
supercells at increasing energy cutoffs Ec. In particular,
we use finite shear strains of ∆ε4 = ±0.005, and we cal-
culate the selected TOEC by using 2nd-PK stress tensors
that are calculated by either accounting or not for the
Pulay corrective terms in Eq. 9. The results in Fig. 2

show that the value of C
(3)
144 is subjected to large errors,

regardless of the Pulay corrections, thereby showing that
these errors do not arise from the use of a finite basis set
or the stress formalism implemented in our DFT scheme.
Figure 2 and additional calculations show also that these
errors do not decrease in a regular manner for increas-
ing Ec, and that they tend to be larger for small-valued
TOECs. Interestingly, such a variability of results has
also been obtained by using methods based on fitting
energy-density versus strain curves.

The errors in Fig. 2 resulting from using Eq. 7 to calcu-
late a small-value TOEC are algorithmic in nature. DFT
methods based on plane waves utilize both a truncated
discrete Fourier space and uniform real-space grids to
store the value of wavefunctions and the charge density,
and calculate the terms of the total energy, forces, and
stress [15, 19, 22]. Due to the use of real-space grids,
small differences in the stress components arise when,
in case of crystals with a complex basis, the positions
of the atoms within the supercell shift across the mesh
of real-space points (Fig. 3). These differences become
noticeable when we compare the stress tensor of an un-
stressed and shear strained crystal such as diamond (Fig.
3) or silicon. In these cases, a shear deformation leads
to a breaking of the crystal symmetries, causing atoms
in the unit cell to relax, change relative positions, and
form inequivalent bonds [15, 26]. At a fixed energy cut-
off, atoms within the unit cell of an unstressed crystal
(typically) sits on top of points of the real-space grid,

whereas such an alignment with grid points is lost in su-
percells accommodating a (shear) strain and a non-zero
internal stress (Fig. 3). In brief, this shows that a plane-
wave DFT calculation of an unstressed crystal differs, in
numerical terms, from the calculations executed for the
shear deformed states (Fig. 3). Differences in the nu-
merical treatment translate into errors that can greatly
affect the values of TOECs determined from stress-strain
curves and numerical differention techniques (Fig. 2).

To eliminate the numerical errors resulting from the
use of Eq. 7 and plane-wave based DFT methods, we
propose two simple solutions. First, instead of using the

components P
(0)
α computed by DFT for the unstressed

state, in Eq. 7 we use values P̃
(0)
α , obtained by extrapo-

lation of values, P
(±∆εβ)
α , calculated for systems accom-

modating a small finite strain. As shown in both Figs. 2
and 3, this solution gives excellent results, yielding values
of small-value TOECs that converge rapidly with the en-
ergy cutoff. Second, the numerical trick above is needed,
or can be applied, to calculate the three TOECs with
equal indices. In all other cases, any TOEC can be cal-

culated by using Eq. 8, as for instance C
(3)
αββ = C

(3)
βαβ .

Equation 8 allows to estimate a TOEC with at least two
unequal indices, without needing information about the
unstressed state, and thus by using components of stress
tensors computed under very similar “algorithmic” con-
ditions. In the following applications of this method to
calculate TOECs, we have adopted both solutions and
verified that, within a few percent errors, they give the
same results.

We use our method to calculate SOECs and TOECs
at 0 K of three cubic crystals, namely diamond, silicon,
and aluminum, and one hexagonal crystal, that is mag-
nesium. The calculated SOECs and TOECs are reported
in Table I together with experimental data measured at
finite temperature. Our results shown in Table I com-
pare well with both experimental data [3, 6–8, 10, 27]
and previous DFT calculations [9, 10]. The agreement
with the experiments is very good in the case of silicon
and the metals, whereas it is satisfactory in case of dia-
mond, for which the reported data show large variations
and experimental uncertainties (Table I). In addition to
applications to 3D crystals, we also use our method to
calculate SOECs and TOECs at 0 K of two 2D crys-
tals, namely graphene [13, 28] and washboard-graphane
[28], a conformation of a fully hydrogenated graphene
layer exhibiting a well-defined and regular arrangement
of H atoms [28]. The latter 2D crystal has orthorhom-
bic symmetry, with a rectangular unit cell containing
4 C-H bonds. Our method gives values of the SOECs
and TOECs of these two 2D materials (Table II) that
are in agreement with results of recent DFT calculations
[28]. Experimental elastic constants are available only for
graphene and a few other 2D membranes [11, 12]. The
most accredited value for the 2D Young’s modulus of
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graphene is ∼340 N/m, although values between 20 and
700 N/m have been also reported [12]. Experimental es-
timates for the nonlinear elastic stiffness of graphene are
also available [11, 12]. However, these elastic constants
are extracted by fitting force versus indentation depth
curves, and thus they cannot be directly compared to
our calculated TOECs. Overall, our results in Table II
show that our method can be used to predict SOECs and
TOECs of complex materials such as graphane, for which
the experimental determination of its elastic constants
would be difficult to achieve. Furthermore, it is to be
noted that our method gives the values of all the elastic
constants, not only the independent ones. For instance,
Table II reports the calculated value of -639 N m−1 for

C
(3)
244, whereas using symmetry relations, its value should

be (2C
(3)
111 − C

(3)
222 − C

(3)
112)/4=-629 N m−1. These checks

allow to estimate a percent error on all elastic constants
obtained with our method of about ±2%.
In conclusion, we have presented a method to calculate

TOECs based on numerical differentiation of the second
Piola-Kirchhof stress tensor. When used in conjunction
with a periodic first principles approach, our method al-
lows to predict the full set of TOECs, regardless of sym-
metry and structure of the periodic 3D or 2D material.
Each elastic constant is calculated independently, by car-
rying out up to four first principles calculations. In this
work, we have adopted a plane-wave DFT scheme to cal-
culate stress values, and we have put forward simple so-
lutions to overcome the errors resulting from the use of
a truncated basis set and real-space grids. The appli-
cations to 3D and 2D crystals have demonstrated both
the validity of our solutions and the overall accuracy of
our method. This method and the ability to calculate
the values of TOECs from first principles, not necessar-
ily a plane-wave based DFT approach, will allow to pre-
dict nonlinear elastic behaviors of complex materials such
as alloys, defected crystals, and 2D films [29], thereby
impacting areas such as nanomechanics [29], nonlinear
acoustics, and mechanical engineering.
We acknowledge the support of the NSF grant CMMI-

1436375, the CUNY High Performance Computing Cen-
ter, and the Extreme Science and Engineering Discovery
Environment (XSEDE, NSF grant ACI-1548562) [30].
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FIG. 1: Energy density U (Eq. 3) of diamond versus normal
uniaxial (Lagrangian) strain ε1. Inset, component P1 of the
2nd-PK stress tensor versus ε1. Colored discs show the results
obtained from DFT calculations [19] using an energy cutoff
of 300 Ry. Solid lines are guides to the eye. To calculate

C
(2)
11 and C

(3)
111, we use the value of P1 at the unstressed state

(large black disc) and those obtained at either ε1 = ±0.005
or ε1 = ±0.010 (circles).
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FIG. 2: C
(3)
144 of diamond obtained from Eq. 7 by using values

of P1 calculated by DFT at increasing energy cutoffs. C
(3)
144

is calculated by using the value of P1 at an unstressed state,
and values of P1 of crystals accommodating a shear strain
of ε4 = ±0.005. The blue (black) colored solid line shows
the results obtained by (not) including in the Cauchy stress
the Pulay corrective terms of Eq. 9. Red colored dashed line
shows the results obtained by replacing P1 at the unstressed
state in Eq. 7 with the value obtained by extrapolation from
the values of P1 at ε4 = ±0.005 and ±0.010.
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TABLE I: Independent SOECs and TOECs (in GPa) of diamond, silicon, aluminum, and magnesium obtained by using Eqs.
6–8, and the numerical solutions described in the text. Experimental data are also shown for comparison. DFT calculations
are carried out by using energy cutoffs of 100 Ry (diamond and silicon), 50 Ry (aluminum), and 30 Ry (magnesium). All
calculations are carried out by using stringent convergence thresholds, and in case of the metals, we use fractional occupations
and a smearing energy of 0.02 Ry.

C
(2)
11 C

(2)
33 C

(2)
66 C

(2)
44 C

(2)
13 C

(2)
12 C

(3)
111 C

(3)
112 C

(3)
113 C

(3)
222 C

(3)
123 C

(3)
133 C

(3)
333 C

(3)
144 C

(3)
155 C

(3)
344 C

(3)
456

Diamond 1037 – – 552 – 120 -5876 -1593 – – 618 – – -197 -2739 – -1111
Exp. Ref.[10] 1082 – – 579 – 125 -7750 -2220 – – 604 – – -1780 -2800 – -30
Exp. Ref.[6] – – – – – – -7603 -1909 – – 835 – – 1438 -3938 – -2316

Silicon 142 – – 72 – 51 -744 -393 – – -59 – – 4 -297 – -59
Exp. Ref.[27] 166 – – 80 – 64 -795 -445 – – -75 – – 15 -310 – -86
Aluminum 108 – – 33 – 59 -1100 -371 – – 104 – – 39 -421 – -22
Exp. Ref.[7] 107 – – 28 – 60 -1076 -315 – – 36 – – -23 -340 – -30
Magnesium 58 62 17 16 19 24 -602 -190 4 -762 -55 -107 -657 -60 -50 -163 –
Exp. Ref.[8] 59 62 17 16 – 26 -663 -178 30 -864 -76 -86 -726 -30 -58 -193 –



6

-0.01 -0.005 0.0 0.005 0.01

-0.01

-0.008

-0.006

-0.004

-0.002

0.0

ε4

P 1 
(G

P
a)

FIG. 3: Component P1 of the 2nd-PK stress tensor of a di-
amond crystal accommodating a shear strain ε4. Discs show
results obtained from DFT calculations carried out using en-
ergy cutoffs of 100 Ry (blue and black) and 200 Ry (red),
with atoms in the unstressed primitive unit cell having frac-
tional coordinates (0, 0, 0) and (0.25, 0.25, 0.25) (blue), and
(x, y, z) and (0.25 + x, 0.25 + y, 0.25 + z) (black and red),
where x, y, z are random numbers in the interval (0, 1). In-
sets, schematic representations of unstressed (blue and black)
and shear strained (red) unit cells, with lattice coordinates
that are (blue) or are not (black and red) aligned with the
real-space grid of points used to represent wavefunctions in
plane-wave based DFT calculations.

TABLE II: SOECs and TOECs (in N m−1) of monolayer
graphene (G) and washboard-graphane (W) calculated by us-
ing Eqs. 6–8. DFT calculations are carried out by using en-
ergy cutoffs of 100 Ry, and a vacuum region of 12 Å.

C
(2)
11 C

(2)
22 C

(2)
12 C

(2)
44 C

(3)
111 C

(3)
222 C

(3)
112 C

(3)
122 C

(3)
144 C

(3)
244

G 348 348 59 144 -2920 -2873 -448 -515 -569 -639
W 276 162 21 80 -2580 -1211 -92 -295 -291 -405
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