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Stochastic heat engines are devices that generate work from random thermal motion using a small
number of highly fluctuating degrees of freedom. Proposals for such devices have existed for more than a
century and include the Maxwell demon and the Feynman ratchet. Only recently have they been
demonstrated experimentally, using, e.g., thermal cycles implemented in optical traps. However, recent
experimental demonstrations of classical stochastic heat engines are nonautonomous, since they require an
external control system that prescribes a heating and cooling cycle and consume more energy than they
produce. We present a heat engine consisting of three coupled mechanical resonators (two ribbons and a
cantilever) subject to a stochastic drive. The engine uses geometric nonlinearities in the resonating ribbons
to autonomously convert a random excitation into a low-entropy, nonpassive oscillation of the cantilever.
The engine presents the anomalous heat transport property of negative thermal conductivity, consisting in
the ability to passively transfer energy from a cold reservoir to a hot reservoir.
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Thermodynamics in low-dimensional systems far from
equilibrium is not well understood, to the point that essential
quantities such as work [1] or entropy [2] do not have
universally valid definitions in such systems. Formulating a
physical theory for thermal processes in low-dimensional
systems is the subject of stochastic thermodynamics [3], an
emergent field that has resulted in the discovery of a variety of
microscopic heat engines [4—12] and fluctuation theorems
[13-16], and has provided new insights on the connection
between information and energy [5,17-20]. A central prob-
lem in stochastic thermodynamics is the construction and
analysis of stochastic heat engines, the low-dimensional
analogs of conventional thermal machines. A stochastic heat
engine is a low-dimensional device that operates between
two thermal baths at different temperatures, and is able to
produce work while suppressing the randomness inherent in
thermal motion [1,4—7,21-23]. Thermal engine operation is
characterized by the presence of nonpassive states of motion,
which have lower entropy (for the same energy) than
equilibrium states [24,25] and therefore allow the extraction
of energy without an associated entropy flow [1]. The interest
in stochastic heat machines is motivated by the desire to
understand energy conversion processes at the fundamental
level. This understanding, coupled with modern nanofabri-
cation techniques, is expected to result in more efficient and
powerful thermal machines.

The concept of the stochastic heat engine dates back to
the classical thought experiments of the Maxwell demon
[18,26] and the Feynman ratchet [27,28]. Only very
recently have working experimental realizations of the
stochastic heat engine been reported on [4-8]. The bulk
of these experimental realizations is based on the manipu-
lation of a particle in an optical trap, and include the
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implementation of adiabatic processes [7], feedback loops
[5], as well as Stirling [6] and Carnot [4] cycles. These
engines are nonautonomous since they operate under
externally prescribed cycles. As a consequence, the energy
they require to operate is orders of magnitude higher than
the work they produce, and the externally prescribed
dynamical cycle masks the significant challenges that
hinder the description of autonomous physical systems
[1]. In this Letter, we describe a classical mechanical
system that realizes autonomous thermal engine operation.
Our proposed engine consists of two coupled ribbons and
a cantilever beam connected to one of the ribbons. The
presence of nonlinearity in the ribbons dynamically and
autonomously adjusts the coupling to the hot and cold
thermal baths, thus replacing the external control unit in
the nonautonomous realizations reported until now. We
demonstrate this concept in a macroscopic tabletop setup,
utilizing two 30 cm long brass ribbons and a 40.6 cm
long steel cantilever [29]. Since our system is too large to
exhibit sufficient Brownian motion at room temperature,
we magnetically excite one of the ribbons using white
noise to simulate a high effective temperature, Ty
(up to 5x 10" K). In the Supplemental Material [29],
we numerically demonstrate the engine’s scaling to micro-
scopic dimensions, where Brownian motion at experimen-
tally accessible temperatures (150 °C) is sufficient to induce
measurable self-sustained thermal engine operation.

The thermal cycle of our engine is analogous to the
classical Stirling cycle [Figs. 1(a) and 1(b)], which consists
of four steps performed on a working fluid—heating,
expansion, cooling, and compression. The ribbon attached
to the cantilever (main ribbon, with displacement denoted
xyr) plays the role of the working fluid. This ribbon is in

© 2016 American Physical Society


http://dx.doi.org/10.1103/PhysRevLett.117.010602
http://dx.doi.org/10.1103/PhysRevLett.117.010602
http://dx.doi.org/10.1103/PhysRevLett.117.010602
http://dx.doi.org/10.1103/PhysRevLett.117.010602

PRL 117, 010602 (2016)

PHYSICAL REVIEW LETTERS

week ending
1 JULY 2016

(b)

Gy (i j (v) W
A g
l

Pressure

Volume

() Q}R' (v) i
[T

FIG. 1. Cyclic thermal engines. (a) Stirling heat engine. The
engine uses a piston to cyclically compress and expand a gas. A
secondary piston displaces the gas and regulates the coupling
to the hot and cold reservoirs. (b) Thermal cycle for the Stirling
engine. The difference in pressure during expansion and con-
traction causes the gas to perform net work over a cycle (green
shaded area). (c) Proposed mechanical autonomous stochastic
engine, consisting of two ribbons, main and secondary (displace-
ments x,, and xy, respectively), and a cantilever (displacement
Xw)- (d) Thermal cycle for the proposed engine consisting of four
steps: (i) x,, is at its leftmost position and energy flows from xy
to x,, (i) M,, moves to the right (x,, > 0), while x,, stays in a
high-energy state, (iii) x,, is at its rightmost position, and energy
flows from x,, to the cold bath, (iv) x,, moves back to the initial
position while x,, stays in a low-energy state.

contact with a cold thermal bath at temperature 7¢ (in our
experimental setup 7T¢ is the temperature of the ribbon’s
environment, 293 K). The cantilever, also at room temperature,
Tyw =293 K, acts as a piston that introduces cyclic com-
pressions and expansions of the ribbon and extracts work from
the fluctuations in the ribbon’s tension. Because of geometric
nonlinearity, this tension increases proportionally to the
ribbon’s vibrational energy and is analogous to the pressure
of the gas in a conventional engine. A hot thermal bath, at
temperature 7y, introduces the thermal noise that causes
Brownian motion. This heat bath is applied to a secondary
ribbon (labeled xj). The secondary ribbon is weakly coupled
to the main ribbon and regulates the coupling between the
hot reservoir and the main ribbon [Figs. 1(c) and 1(d)].
Stirling engines require a mechanism to heat and cool the
working fluid in synchrony with the motion of the piston. In
conventional engines this can be accomplished by a secon-
dary internal piston [Fig. 1(a)] that displaces the fluid,
placing it in contact with the hot and cold reservoirs. Prior
implementations of the stochastic Stirling cycle used a laser
to heat the working particle at predetermined time intervals
[6], making the engine nonautonomous. Our engine attains
autonomous operation by utilizing the resonance responses
of the two ribbons. Because of geometric nonlinearity, the
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FIG. 2. Thermal engine operation. (a) Theoretical uncoupled
frequency response of the main ribbon (x,,), for cantilever displace-
ments xy of —50 um (blue, solid curve), 0 ym (green, dashed
curve), and 50 ym (red, dotted curve). The uncoupled frequency
response of the secondary ribbon x (thick purple curve) is shown
for comparison. (b) Theoretical energy transfer O between the hot
bath (applied to the secondary ribbon x) and the main ribbon (x,,),
as a function of the cantilever displacement. The colored dots
correspond to the curves in (a). The roman numerals indicate the step
of the thermal cycle associated to each displacement and energy
transfer. (c) Experimental probability distribution of x,, as a function
of the cantilever’s oscillation phase, 6(&y,xy). (d) Experimental
force acting on the cantilever as a function of the cantilever
displacement. (e) Theoretical (blue line) and experimental (black
dots) power transfer from the main ribbon to the cantilever as a
function of the effective temperature of xz. (f) Experimental time
evolution of the cantilever (dark red) and ribbon (light blue). The
green circle indicates the case Ty, = 4.2 x 10'® K, corresponding to
the experimental conditions depicted in (c), (d), and (f).

resonance frequency of the main ribbon (f,) depends on the
position xy, of the cantilever [Fig. 2(a)], while the resonance
frequency of the secondary, hot ribbon (f) is fixed. As a
consequence, the overlap between the respective frequency
responses (and therefore the energy transfer [35] between 7'y
and x,,) is controlled by the cantilever [Fig. 2(b)]. By setting
the frequency of the main ribbon below the frequency of the
secondary ribbon, the maximum energy transfer between the
hot bath and the main ribbon occurs when the cantilever
is at its leftmost position, as required by the thermal cycle
[Fig. 2(b)]. Recent theoretical proposals in optomechanics
utilize a similar mechanism to control the coupling between
an optical resonator and a heat source [36-38].
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This tension-mediated feedback mechanism introduces
the synchronous heating and cooling required for thermal
engine operation without the need of externally prescribed
periodic temperature variations as in prior works [4,6,7]. The
resulting changes in the main ribbon’s vibrational energy can
be seen in the probability distribution of its position, which is
modulated by the cantilever motion [Fig. 2(c)]. The modu-
lation is maximal when the natural frequencies are chosen
such that modulation sidebands of the main ribbon’s motion
coincide with a resonance peak of the coupled system. For
weakly coupled ribbons, this condition is approximately
fu — fu = fw- In our experiments, f), varies between 140
and 190 Hz, f = 192.55 Hz, and f, = 26.87 Hz [29].

Figure 2(d) shows the dynamic tension exerted by the main
ribbon on the cantilever as a function of the cantilever’s
position. The dynamic tension was calculated from the
measured probability distribution of the ribbon’s position
x; using the equation 7 = y(x3,), where y = 513 kN/m?
quantifies the nonlinear coupling between the ribbon’s
tension and its bending stiffness. This quantity is analogous
to the pressure-volume relation in a piston engine. The area
inside the curve corresponds to the average work transferred
to the cantilever per cycle of operation. This area has a value of
179.2 £ 7.7 nJ, in good agreement with the average power
dissipated in the cantilever, determined to be 171.2 £ 7.1 nJ
per cycle from the quality factor and average vibrational
amplitude. The power output increases nonlinearly with
applied noise temperature [Fig. 2(e)]. At T, =4.2x10'3K,
its normalized value P = 0.095 4 0.009 k, T s~' is com-
parable to that of stochastic engines reported in the literature,
whose values are around 0.02 [6] and 5 k, T s~! [4]. The high
effective noise temperatures in Fig. 2(e) are a consequence of
the macroscopic dimensions of our tabletop setup, which
mandate the use of an external noise excitation. In the
Supplemental Material [29], we present simulations on a
microscopic engine capable of attaining an output power
above 12000 k,Ts™!, owing to its high frequency of
operation. While our tabletop demonstration requires a
significant amount of energy to simulate the high effective
temperature 7', the microscopic engine does not use any
additional energy source besides the heat extracted from 7'y,.

During thermal machine operation, the trajectory of the
cantilever is approximately a harmonic signal with a slowly
varying envelope, while the motion of the ribbon is highly
random [Fig. 2(f)]. We further investigate the properties of
the cantilever motion by calculating the phase space
probability distribution from the experimental measure-
ments [Fig. 3(a)] and theoretical simulations [Fig. 3(b)].
The cantilever’s probability distribution is concentrated
around a circular orbit, approximating harmonic motion
with some amplitude and phase noise (in pure harmonic
motion the probability density would be zero everywhere
except in a circular, one-dimensional region). This prob-
ability distribution is nonpassive: the amount of energy is
not minimal given the entropy of the distribution. This
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FIG. 3. Properties of the cantilever motion. (a) Experimental
phase space probability distribution corresponding to the case
when the frequency of the ribbons is tuned to achieve thermal
engine operation at T = 4.2 x 10'® K. (b) Theoretical phase
space probability distribution for the experimental case in (a).
(c) Phase space probability density function for the cantilever in
the detuned system (where f); > fy; see Supplemental Material
[29] for the exact values) at Ty = 2 x 10'® K. (d) Theoretical
prediction for the system in (c). (¢) Experimental entropy of the
cantilever motion as a function of the energy (blue crosses),
compared to a theoretical prediction (red line) and to the maximal
entropy for the given energy (green dotted line). The green circle
indicates the experimental conditions used in (a), (b), and (f), as
well as in Figs. 2(c), 2(d), and 2(f). (f) Fourier transform of the
experimental cantilever motion.

allows for work extraction without a corresponding flow of
entropy [1]. Additionally, the system presents a region of
population inversion, with higher probability density
around the circular orbit than close to the origin, where
the energy is lowest. This distribution is similar to the
theoretically predicted Wigner function for a quantum
optomechanical heat engine [38], and contrasts with the
passive Gaussian distribution describing harmonic oscil-
lators subject to a white noise excitation [39]. We compare
the phase space distribution during thermal machine
operation [Figs. 3(a) and 3(b)] with that of a detuned
system (i.e., where fy < fy; see Supplemental Material
[29]). In the detuned system, the main ribbon heating is out
of sync with the phase of the cantilever oscillation cycle.
This prevents thermal machine operation and results in a
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Gaussian phase space probability distribution for the
cantilever, maximizing the entropy for a given mean energy
[Figs. 3(c) and 3(d)].

We quantify the randomness of the cantilever’s motion
by calculating the entropy of its phase space probability
distribution [Fig. 3(e)]. The difference between the canti-
lever’s entropy and the corresponding equilibrium entropy
increases at high cantilever vibrational energies. This
indicates the coexistence of two energy transfer mecha-
nisms: an incoherent mechanism analogous to heat transfer
[40], where fluctuations of the main ribbon introduce
fluctuations on the ribbon’s tension that cause the cantilever
to move randomly, and a coherent mechanism, where the
motion of the main ribbon is modulated by the vibration
of the cantilever. At low amplitudes [Fig. 3(e) and
Supplemental Material (Animation 1) [29]], or when the
main ribbon frequencies are not tuned to result in thermal
machine operation [Figs. 3(c) and 3(d)], the incoherent
mechanism dominates, resulting in a maximally entropic
(passive) probability distribution for the cantilever. At high
amplitudes the coherent mechanism becomes significant
and the motion of the cantilever is nonpassive, with entropy
below the maximal value [Fig. 3(e)]. The Fourier transform
of the cantilever velocity [Fig. 3(f)] reveals that its motion
occurs mostly at the first mode of resonance. Higher
cantilever modes and resonances of the ribbons are below
the fundamental component by at least 80 dB. We attribute
the presence of small quantities of harmonics to non-
linearities in our measurement system.

The heat engine presented in this Letter corresponds to
the mass-spring model in Fig. 4(a) and is described by the
system of underdamped [41] Langevin [42,43] equations
(see Supplemental Material [29] for derivation and numeri-
cal algorithms):

myky + buyky + kpxy + kpy (xg — xy) + pxyy = Eg,
My + by + (kyr — 2yxy)xy
+ kyy (xy — xp) + pxyy = Ec,

myky + byxy + kyxy — yxy = Ey. (1)

Here, ky, ky;, and ky, are the stiffness of the hot ribbon, the
main ribbon, and the cantilever, respectively, by, by, and
by are the corresponding linear damping coefficients, and
mpy, myy, and my, are the corresponding masses. The terms
&y, Ec, and &y represent the thermal noise introduced by
the baths acting on each degree of freedom. These terms
have a white noise power spectral density of 4KzTyxby
[44]. This relationship between dissipation, temperature,
and excitation force is used to determine the experimental
effective temperature. In the numerical simulations, the
temperature 7' is set to match the excitation used in the
experiments, while 7+ and Ty are set to zero (except
otherwise indicated), since they are negligible in compari-
son to Ty. The constant kg, represents the linear coupling

between the two ribbons, y is the nonlinear coupling
between the main ribbon and the cantilever (also appearing
in the ribbon’s dynamic tension equation), and yu is the
cubic nonlinear stiffness of the ribbons. Experimentally
measured values for the all parameters are provided in the
Supplemental Material [29]. Coupled degrees of freedom
subject to Brownian motion have been studied in electronic
systems [40], and the asymmetric coupling between x,,
and xy appears in the description of phonon modes in
superconductors [45].

As demonstrated in Fig. 3, the theoretical model predic-
tions are in good agreement with the experiments. Thus, we
use the model to determine quantities that are not directly
measurable in our experimental setup, such as the energy
transfer between ribbons. We highlight the most relevant
theoretical findings in Fig. 4. We define the power transfer
between a degree of freedom and its thermal bath as the
work of the thermal noise and damping: dWy/dt =
((byxyx — &x)xx) [46]. We first study the effect of the
cantilever thermal bath’s temperature 7y. Increasing
Ty increases the energy transferred between T and Ty,
[Fig. 4(a)]. This corresponds to an effective negative thermal
conductivity. In addition, the system is able to transfer energy
between the thermal baths Ty and Ty even when Ty, is
increased above T'y. This observation, which seems to defy
the second law of thermodynamics, is made possible by the
fact that x,, is at a lower temperature than xz and absorbs
the excess entropy extracted from & Figure 4(c) presents the
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FIG. 4. Theoretical investigation. (a) Mass-spring model for
the system. (b) Energy transfer as a function of the cantilever
temperature Tyy. (c) Efficiency of the thermal machine (blue,
solid line) and comparison with the Carnot efficiency (red, dashed
line). Here, the cantilever motion has been prescribed to be
xy = (50 pum) cos(wyt) to prevent incoherent energy transfer
between the ribbons and the cantilever. (d) Refrigerator coef-
ficient of performance (C.0.P. = Q./W) when the cantilever is
forced to oscillate at Ay, = 50 um (blue, solid line) and when
driven by noise at Ty = kWA%V/ kp (green, dotted line). The red
dashed line is the Carnot maximal C.O.P.
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efficiency of the thermal machine as a function of the ratio
between Ty and T.. The machine attains a maximum
efficiency of approximately 30% of the maximal Carnot
efficiency using our experimental, unoptimized parameters.
In the Supplemental Material [29] we present alternative
designs that attain efficiencies up to 50% of the theoretical
maximum. When the temperature ratio Ty /T is close to 1,
the energy flow between T'y; and T - reverses, and the machine
acts as a refrigerator [23]. The refrigerator regime requires a
constant supply of energy to the cantilever. This energy can be
provided by externally prescribing the cantilever displace-
ment, or by increasing T’y to introduce large amplitude
thermal motion in the cantilever. In the latter case, the main
ribbon is cooled through the addition of heat to the system,
which behaves as an absorption refrigerator [36,47-50].
Figure 4(d) presents the efficiency of the refrigerator
operation.

This work has demonstrated that a mechanical system
consisting of two ribbons and a cantilever has the ability to
act as a heat engine or refrigerator, and presents the unusual
property of negative thermal conductivity. Traditionally,
Brownian motion has been seen as an inconvenience
when present in mechanical systems, e.g., by limiting
the precision of nanomechanical sensors [51]. Our work
demonstrates that this thermal noise may be a source of
energy and a tool to study thermodynamics in both macro-
and microscale systems. This work was supported by ETH
Research Grant No. ETH-24 15-2 and ETH Zurich
Foundation Seed Project ESC-A 06-14.
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