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We report the analysis of the three-body eTe™ — BBr®*, BB*rt, and B* B*n* processes, includ-
ing the first observations of the Z(10610) — [BB* + c.c.]® and Z7 (10650) — [B* B*]* transitions
that are found to dominate the corresponding final states. We measure Born cross sections for the
three-body production of o(ete™ — [BB* 4 c.c.]®n¥) = (17.4 & 1.6(stat.) &+ 1.9(syst.)) pb and
o(ete™ = [B*B*)*nT) = (8.75 + 1.15(stat.) & 1.04(syst.)) pb and set a 90% C.L. upper limit of
o(ete™ — [BBJ*71T) < 2.9 pb. The results are based on a 121.4 fb~! data sample collected with

the Belle detector at a center-of-mass energy near the Y(10860) peak.

PACS numbers: 14.40.Rt, 14.40.Pq, 13.66.Bc

Two mnew charged bottomonium-like resonances,ior
Zp(10610) and Z,(10650), have been observed recentlyios
by the Belle Collaboration in ete™ — Y(nS)rtn—,
n=1,23 and ete™ — hy(mP)rT7n~™, m = 1,2 [1, 2].10
Analysis of the quark composition of the initial and finalo
states reveals that these hadronic objects have an exoticiu
nature: Z, should be comprised of (at least) four quarksuz
including a bb pair. Several models [3] have been pro-us
posed to describe the internal structure of these states. Inus
Ref. [4], it was suggested that Z;,(10610) and Z;,(10650)s
states might be loosely bound BB* and B*B* systems,us

respectively. If so, it is natural to expect the Z, statesur
118

to decay to final states with B(*) mesons at substantial
rates.

Evidence for the three-body Y(10860) — BB*m de-
cay has been reported previously by Belle, based on
a data sample of 23.6 fb~! [5]. In this analysis, we
use a data sample with an integrated luminosity of
121.4 fb~! collected near the peak of the Y(10860) res-
onance (y/s = 10.866 GeV) with the Belle detector [6]
at the KEKB asymmetric-energy eTe™ collider [7]. Note
that we reconstruct only three-body B™) B*)1 combi-
nations with a charged primary pion. For brevity, we
adopt the following notations: the set of BT B%r~ and
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FIG. 1: The (a) invariant mass and (b) M}, (Bw) distribu-'*
tion for B candidates in the B signal region. Points with errors
bars represent the data. The open histogram in (a) shows theeo
result of the fit to data. The solid line in (b) shows the resultis
of the fit to the RS Bm data; the dashed line represents the,

background level.
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B~ BOrt final states is referred to as BBm; the set of:;
B*B*r~, B~B*9*, B°B*~nt and B°B*tn~ final
states is referred to as BB*m; and the set of B*"’B*Ow_177
and B*~ B*On* final states is denoted as B* B*w. The n-
clusion of the charge conjugate mode is implied through-
out this report. 150

We use Monte Carlo (MC) events generated with Evt-,,
Gen [8] and then processed through a detailed detector,,,
simulation implemented in GEANT3 [9]. The simulated,,,
samples for eTe™ — q7 (¢ = u, d, s, ¢, or b) are equiv-,,,
alent to six times the integrated luminosity of the data,g,
and are used to develop criteria to separate signal events,,
from backgrounds, identify types of background events,,,,
determine the reconstruction efficiency and parameterize,,,
the distributions needed for the extraction of the signal,,,
decays. 1%

B mesons are reconstructed in the following decayio
channels: Bt — J/yK®+ Bt — D&Oxt+ B0 5,
J/z/JK(*)O, BY — D®)~7zt. We use Belle standard tech-,;
niques [10] to reconstruct primary particles such as pho-,
tons, pions, kaons, and leptons. The K*O (K*T) is re-je
constructed in the K7~ (K%) final state; the invari-
ant mass of the K* candidate is required to be within,g,
150 MeV/c? of the nominal K* mass [11]. The invari-
ant mass of a J/¢ — £T¢~ candidate is required to.,
be within 30 (50) MeV/c? for £ = e (p), of the nom-,,
inal J/1 mass. Neutral (charged) D mesons are re-,,
constructed in the K7, K~nt7% and K—n ntnt,,
(K~ 7tw") modes. To identify D* candidates, we require,,
|M (D) — M(D) — Amp+| < 3 MeV/c?, where M (D),
and M (D) are the reconstructed masses of the D* and D
candidates, respectively, and Amp+ = mp~ — mp is the,,
difference between the nominal D* and D masses. The,,
mass windows for narrow states quoted above correspond,,
to a £2.50 requirement. 200

The dominant background comes from eTe™ — ¢ con-a10
tinuum events, where true D mesons produced in eTe™an
annihilation are combined with random particles to formo.
a B candidate. This type of background is suppressed us-23

ing variables that characterize the event topology. Since
the momenta of the two B mesons produced from a three-
body ete™ — B® B® 1 decay are low in the center-of-
mass (c.m.) frame (below 0.9 GeV/c), the decay prod-
ucts of different B mesons are essentially uncorrelated so
that the event tends to be spherical. In contrast, hadrons
from continuum events tend to exhibit a back-to-back jet
structure. We use 60y, the angle between the thrust axis
of the B candidate and that of the rest of the event, to
discriminate between the two cases. The distribution of
| cos Oinr| is strongly peaked near |cosfin,| = 1.0 for cé
events and is nearly flat for B®)B® 7 events. We re-
quire | cos O] < 0.80 for the B — D™ 7 final states;
this eliminates about 81% of the continuum background
and retains 73% of the signal events.

We identify B candidates by their reconstructed in-
variant mass M (B) and momentum P(B) in the c.m.
frame. We require P(B) < 1.35 GeV/c to retain B
mesons produced in both two-body and multibody pro-
cesses. The M (B) distribution for B candidates is shown
in Fig. 1(a). We perform a binned maximum likelihood
fit of the M (B) distribution to the sum of a signal compo-
nent parameterized by a Gaussian function and two back-
ground components: one related to other decay modes of
B mesons and one due to continuum ete~ — ¢q pro-
cesses, where ¢ = u,d, s,c. The shape of the B-related
background is determined from a large sample of generic
MC; the shape of the g background is parameterized
with a linear function. The parameters of the signal
Gaussian, the normalization of the B-related background
and the parameters of the gg background float in the fit.
We find 12263 + 168 fully reconstructed B mesons. The
B signal region is defined by requiring M (B) to be within
30 to 40 MeV/c? (depending on the B decay mode) of
the nominal B mass.

Reconstructed B or B° candidates are combined with
7 ’s — the right-sign (RS) combination — and the
missing mass, Myiss(B7), is calculated as Myiss(B7m) =
V(8 — Epr)2/c* — P%_/c2, where Ep, and Pp, are
the measured energy and momentum of the reconstructed
Br combination. Signal eTe™ — BB*r events produce
a narrow peak in the Myiss(B7) spectrum around the
nominal B* mass while ete™ — B*B*r events produce
a peak at mp+ + Amp~, where Ampg« = mp+ — mp,
due to the missed photon from the B* — B~ decay. It
is important to note here that, according to signal MC,
BB*r events, where the reconstructed B is the one from
the B*, produce a peak in the My,ss(B7) distribution at
virtually the same position as BB*m events, where the
reconstructed B is the primary one. To remove the cor-
relation between Mpyiss(B7) and M (B) and to improve
the resolution, we use M} = Mmiss(Bm)+M(B)—mp
instead of Mmiss(Bm). The M} ;. distribution for the RS
combinations is shown in Fig. 1(b), where peaks corre-
sponding to the BB*m and B* B*m signals are evident.
Combinations with 7% — the wrong sign (WS) combi-
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nations — are used to evaluate the shape of the com-
binatorial background. (The B — J/¥K° mode is not
included in the WS sample but both combinations with
7T and 7~ are added to the RS sample.) We apply factor
of 1.19 + 0.01 [12] to the WS distribution to normalize
it to the expected number of the background events in
the RS sample. There is also a hint for a peaking struc-
ture in the WS M. . distribution, shown as a hatched
histogram in Fig. 1(b). Due to B — B oscillations, we
expect a fraction of the produced B mesons to decay as
BY given by 0.52%/(1 + 22) = 0.1861 & 0.0024, where x4
is the BY mixing parameter [11].

Note that the momentum spectrum of B mesons
produced in events with initial-state radiation (ISR),
ete™ — BB, overlaps significantly with that for B
mesons from the three-body ete~ — B®WB®x pro-
cesses. However, ISR events do not produce peaking
structures in the M. . distribution.

A binned maximum likelihood fit is performed to fit
the M .., distribution to the sum of three Gaussian func-
tions to represent three possible signals and two thresh-
old components Ag(zr — M ;)" exp{(M} s — Tk)/Ok }
(k = 1,2) to parameterize the ¢ and two-body B*) B(*)
backgrounds. The means and widths of the signal Gaus-
sian functions are fixed from the signal MC simulation.
The parameters Ay, «g, 0r of the background func-
tions are free parameters of the fit; the threshold pa-,,
rameters zj are fixed from the generic MC. ISR events
produce an M}, = distribution similar to that for ¢g
events; these two components are modeled by a single
threshold function. The resolution of the signal peaks
in Fig. 1(b) is dominated by the c.m. energy spread and*?
is fixed at 6.5 MeV/c? and 6.2 MeV/c? for the BB*1*"
and B*B*m, respectively as determined from the signal®*
MC. The fit to the RS spectrum yields Ngpr = 13 4+ 25,
Npp+r = 357430 and Np«p-, = 161 £ 21 signal events.””
The statistical significance of the observed BB*m and®”
B*B*r signal is 9.30 and 8.10, respectively. The statis-*"
tical significance is calculated as y/—21n(Lo/Lsig), where™
L and Ly denote the likelihood values obtained with*®
the nominal fit and with the signal yield fixed at zero,”
respectively. 2

For the subsequent analysis, we require |MX.. —

iss

271

283

mp-| < 15 MeV/c? to select BB*m signal events and™
M. — (mp+ + Amp)| < 12 MeV/c?, where Amp =
mp~ — mp, to select B*B*m events. For the se-

lected B™®) B*r candidates, we calculate Miniss(T) =25
V (V5 — Ex)2/ct — P2/c2, where E, and P, are the re-xe
constructed energy and momentum, respectively, of thessr
charged pion in the c.m. frame. The Myss(m) distribu-ss
tions are shown in Fig. 2 [13]. We perform a simultaneousass
binned maximum likelihood fit to the RS and WS sam-200
ples, assuming the same number (after normalization ).
and distribution of background events in both sampleszo.
and known fraction of signal events in the RS samplesss
that leaks to the WS sample due to mixing. To fit thesss

100 T
[ (a \ B3 We data + RS data
RO / N - Model -0 ]
> [ ":)\_\%, Model - 1 ]

r % Model - 2 B
S oot R Mdel -3 1
ot Y Background ]
B A g RN T | $ 7]
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F A 2905 ]
| [ LK

KRR
ol v 1 v 1y .
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My ss(19.

FIG. 2: The Mmuiss(m) distribution for the (a) BB*m and (b)
B*B*r candidate events. Normalization factor is applied for
the WS distributions.

M iss() spectrum, we use the function
F(m) = [fagS(m) + B(m)]e(m)Fpusp(m), (1)

where m = Muiss(7); fsig = 1.0 (0.1366 £ 0.0032, [14])
for the RS (WS) sample; S(m) and B(m) are the signal
and background PDFs, respectively; and Fpusp(m) is
the phase space function. To account for the instrumen-
tal resolution, we smear the function F'(m) with a Gaus-
sian function with o = 6.0 MeV/c? that is dominated by
the c.m. energy spread. The reconstruction efliciency is
parametrized as e(m) ~ exp((m—mq)/A)(1—m/mg)3/4,
where mg = 10.71840.001 GeV/c? is an efficiency thresh-
old and A = 0.094 4- 0.002 GeV/c2.

The distribution of background events is parameter-
ized as By g+n(m) = bope™ 7%= where by and j are fit
parameters and 6, = m— (mpge) +mp-). A general form
of the signal PDF is written as

S(m) = [Az,10610) + Az, (10650) + A |, (2)
where A, = anre’® is the non-resonant amplitude
parameterized as a complex constant and the two
Zy, amplitudes, Ay, are parameterized with Breit-
Wigner functions Az, = aze'®?/(m? — m% — il zmyz).
The masses and widths of the Z, states are fixed
at the values obtained from the analyses of eTe™ —
Y(nS)rTn~ and ete™ — hy(mP)rTn™: My, 10610) =
10607.2 £ 2.0 MeV/c?, Tz, (106100 = 18.4 + 2.4 MeV
and MZ(,(10650) = 10652.2 £ 1.5 MGV/C2, sz(10650) =
11.5 +2.2 MeV [1].
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TABLE I: Summary of fit results to the Mmiss(7) distributions for the three-body BB*m and B*B*r final states.

Mode Parameter Model-0 Model-1 Model-2 Model-3
Solution 1  Solution 2  Solution 1 Solution 2
BB*rw fz,(10610) 1.0 1.454+0.24 0.64+0.15 1.014+0.13 1.18+0.15 —
£z, (10650) — - - 0.05+0.04 0.244+0.11 —
¢Zb(10650)7 rad. — - - —0.26 £0.68 —1.63 £0.14 -
far — 0.48 £0.23 0.41 £0.17 - — 1.0
Gnr, rad. — —1.21 £0.19 0.95 £ 0.32 — — —
—2log L —304.7 —300.6 —300.5 —-301.4 —-301.4 —344.5
B*B*rw be(10650) 1.0 1.04 £0.15 0.77 £0.22 -
far — 0.02 £0.04 0.24 £0.18 1.0
Gnr, rad. — 0.29 £1.01 1.10+0.44 —
—2log L —182.4 —182.4 —182.4 —209.7

We first analyze the BB*m [B*B*w| data with thess
simplest hypothesis, Model-0, that includes only thess.
Z,(10610) [Z,(10650)] amplitude. Results of the fit aress
shown in Fig. 2; the numerical results are summarizedsss
in Table I. The fraction fx of the total three-body sig-ss
nal attributed to a particular quasi-two-body intermedi-sss
ate state is calculated as fx = [|Ax|*dm/[ S(m)dm,ss
where Ax is the amplitude for a particular componentswo
X of the three-body amplitude. Next, we extend the hy-s,
pothesis to include a possible non-resonant component,s,
Model-1, and repeat the fit to the data. Then the BB,
data is fit to a combination of two Z; amplitudes, Model-,,
2. In both cases, the addition of an extra component to;,s
the amplitude does not give a statistically significant im-
provement in the data description: the likelihood value iss4;
only marginally improved (see Table I). The addition ofy
extra components to the amplitude also produces multi-s4
ple maxima in the likelihood function. As a result, we usess
Model-0 as our nominal hypothesis. Finally, we fit bothas,
samples to a pure non-resonant amplitude (Model-3). Inss,
this case, the fit is significantly worse. 353

If the parameters of the Z, resonances are allowedss,
to float, the fit to the BB*m data with Model-0 givessss
10605 + 6 MeV/c? and 25 + 7 MeV for the Z;(10610)s5
mass and width, respectively, and the fit to the B* B*m;
data gives 10648 + 13 MeV/c2 and 23 + 8 MeV for thess,
Z,(10650) mass and width, respectively. The large errorsss
here reflect the strong correlation between the resonances
parameters. 361

The three-body Born cross sections are calculated as

Ny

+,— —
0'(6 e %f)_LBfan(l‘i‘aISR)U;_HP,

3)

where Ny is the three-body signal yield and L =
121.4 fb~! is the total integrated luminosity. The
efficiency-weighted sum of B-meson branching fractions
By is determined using both signal MC and two-body
ete= — BMB® events in data. To avoid the large
systematic uncertainties associated with the determina-
tion of reconstruction efficiencies for B and D decays
to multibody final states, we select a subset of two-body

modes: BY — D°[K*n~]x" and B — J/¢[(t¢~]K, and
calculate By = B;Cl X Nglg*)é(*)/N%c(l*)B(*), where the su-
perscripts “sel” and “all” refer to quantities determined
for the selected subset of B decay modes and for the full
set of modes, respectively. Two-body ete~ — B®*) B(*)
events are selected with the requirement 0.90 GeV/c
< P(B) < 1.35 GeV/c; the B yield is determined from
the fit to the M (B) distribution. We find NAL 5., =
10131+152 and N;?L)B(*) = 2406+62. (MC studies show
no significant dependence of the reconstruction efficiency
on the B momentum.) To account for the non-uniform
distribution of signal events over the phase space, we in-
troduce an efficiency correction factor 1 determined from
the MC simulation with signal events generated accord-
ing to the nominal model. Since we do not observe a
signal in the BBw final state, no correction is made for
this channel. A factor o = 0.897 £ 0.002 is introduced
to correct for the effect of neutral B-meson oscillations
that is determined using the known B mixing parameter
x4 and the yield ratio in data of two-body events with a
reconstructed neutral vs. charged B meson. The ISR cor-
rection, 14 dsg, for the B®*) B*1 final states is calculated
using recent results on o(eTe™ — hy(mP)rT 1) [15] and
an observation that the Y(5S) — hy(mP)rtn~ tran-
sitions are saturated by the intermediated Z, produc-
tion [1]; for the BB final state we assume constant cross
section. For the vacuum polarization correcrection we use
1/]1 — > = 0.928 [16]. The results are summarized in
Table II.

TABLE II: Summary of results on three-body cross sections.
The first (or sole) uncertainty is statistical; the second is sys-
tematic.

Parameter BBm BB*rw B*B*m
Ny, Events 13 +25 357 £+ 30 161 £21
By, 1076 293 £+ 22 276 £+ 21 223 + 17
n 1.0 1.066 1.182
1+ disr 0.720 +£0.017 0.598 £+ 0.016 0.594 + 0.016

o, pb <29 174+£16+19 875 £1.15£1.04
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TABLE III: B branching fractions for the Z;(10610) and_
Z;7(10650) decays. The first quoted uncertainty is statisti-

. . 404
cal; the second is systematic.

405

Channel Fraction, % 406
Zb(10610) Zb(10650) 407
T(S)x+ 0.5470 157008 0177000005 e
T(28)7* 3.62%0 5o ok 139703 00
T(38)r* 2157005 0% 163705 008
hy(1P)m 3451020 6s 8.41%3151 158
hy(2P)m " 467150 08 14.775:3738
BtB*® 4+ BOp*+ 85.6T5 5113 - 209
BB - T3TEIEE o

411
412
The dominant sources of systematic uncertainties for*?
the three-body production cross sections are the uncer-"*
tainties in the signal yield extraction (6.9% for BB*TF:EZ
and 8.7% for B*B*r), in the reconstruction efficiency,,,
(7.6%) (including secondary branching fractions [11]), inaus
the correction factor o (1%), in the integrated luminos-ss
ity (1.4%) and in the ISR correction (2.7%). The overalls
systematic uncertainties for the three-body cross sections**
are estimated to be 7.9%, 10.8%, and 12.0% for the BB,*
BB*m, and B*B*r final states, respectively. jzz
Using the results of the fit to the Myiss(7) spectra,,
with the nominal model (Model-0 in Table I) and theas
results of the analyses of ete™ — YT(nS)nta~ [l]ar
and ete” —  h(mP)rta— [15, 17|, we cal-s
culate the ratio of the branching fractions*
B(z;(10610) — B°B** + B*B*0)/B(Z;7(10610) —**
bottomonium) = 5.93152979) and B(Z, (10650) —>zz:
B**B*)/B(Z}(10650)  —  bottomonium) = =
2.8070-69T0-54 We also calculate the relative frac-sa
tions for Z, decays, assuming that they are saturated+s
by the already observed Y (nS)m, hy(mP)r, and B B*ee
channels. The results are presented in Table III. o
To summarize, we report the first observations of thejzz
three-body ete™ — BB*m and ete” — B*B*m pro-,,
cesses with a statistical significance above 8c0. Measured,,
Born cross sections are g(ete™ — [BB* + c.c.]¥7nT) =w
(17.4 + 1.6 £ 1.9) pb and o(ete” — [B*B*|TaT) =
(8.75 &+ 1.15 + 1.04) pb. For the ete™ — BB process,*
we set a 90% confidence level upper limit of o(ete™ —*
[BB]*n¥) < 2.9 pb. The analysis of the B*)B* masszzj
spectra indicates that the total three-body rates are dom-,,,
inated by the intermediate ete™ — Z,(10610)F7® andae
efe™ — Z,(10650)Fn* transitions for the BB*m andaso
B*B*r final states, respectively. 451
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