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Classical systems containing cleverly devised combinations of loss and gain elements constitute
extremely rich building units that can mimic non-Hermitian properties, which conventionally are attainable
in quantum mechanics only. Parity-time (PT ) symmetric media, also referred to as synthetic media, have
been devised in many optical systems with the ground breaking potential to create nonreciprocal structures
and one-way cloaks of invisibility. Here we demonstrate a feasible approach for the case of sound where the
most important ingredients within synthetic materials, loss and gain, are achieved through electrically
biased piezoelectric semiconductors. We study first how wave attenuation and amplification can be tuned,
and when combined, can give rise to a phononic PT synthetic media with unidirectional suppressed
reflectance, a feature directly applicable to evading sonar detection.

DOI: 10.1103/PhysRevLett.116.207601

PT symmetric systems have recently attracted tremen-
dous attention in the study of extraordinary physics with
non-Hermitian Hamiltonians. A distinctive aspect of PT
symmetry is that such a system remains unaffected after
space-time reflection. Through cunningly synthesized
media containing balanced loss and gain units, these
structures disobey parity symmetry and time-reversal sym-
metry, but are nevertheless symmetric under simultaneous
operation [1–5]. In order to realize PT symmetric
Hamiltonians there are distinctive blueprints to follow. In
nonrelativistic quantum mechanics, governed by the
Schrödinger equation, complex potentials must be
involved, possessing real and imaginary parts that are even
and odd functions of position, respectively. The same is
true in optics following this prescription with a complex
index of refraction [6–8].
The novel approach based on PT symmetry is to

manipulate absorption using judicious structure designs
with gain regions that exhibit intriguing properties as we
will see in the following. The Hamiltonian of such
structures commutes with the combined PT operator
and gives rise to entirely real energy solutions. As long
as these eigensolutions are real, it is said that the system is
within an exact PT symmetric phase. In this phase, power
oscillation occurs, but most remarkably, nonreciprocal
wave propagation sets in [3,5,9]. When loss or gain
increases the eigenvalues become complex as happens
within a broken PT symmetric phase. In this scenario,
the wave dynamics is nonreciprocal with eigenvalues that
appear in complex-conjugate pairs, resulting in some of the
modes experiencing either an exponential increase (ampli-
fier) or decrease (absorber) in total power. The resulting
behavior is both the one of a laser oscillator emitting
in-phase waves and of a coherent perfect absorber that fully

absorbs incoming light [6,10–12]. Exactly at the PT phase
transition point, the two eigenvalues coalesce leading to
an exceptional point singularity. At that abrupt phase
transition the transmission becomes unitary but the system,
in view of the reflection, attains perfect nonreciprocity. In
other words, such a system is highly reflective when probed
from one end but perfectly transparent (zero reflection)
when irradiated at the opposite end [4,5].
These fascinating properties with common notions from

quantum mechanics have important applications for
classical fields such as optics and acoustics in view of
one-way mirrors, cloaks of invisibility and coherent laser
absorbers. In order to realize such non-Hermitian PT
symmetric systems for sound waves, phononic structures
have to be synthesized that contain active lossy constituents
in combination with the time-reversed image, that is, the
gain counterpart. First examples have already been realized
based on optomechanical and electromechanical devices
[13–15]. More specifically, although Zhu et al. studied
intriguing effects associated with PT symmetry, no
existing gain media were used [13]. Fleury et al., on the
other hand, used actively loaded loudspeaker systems [14].
Acoustic diodes have been achieved by combining a
nonlinear material with gain and lossy materials [16]. In
this Letter, we propose a continuum mechanical approach
to realize phononic PT symmetry through the intrinsic
acoustoelectric effect in piezoelectric semiconductors.
Instead of using rather complex transducer devices and
electronic circuits, piezoelectric semiconductors constitute,
by themselves, solid state materials capable of amplifying
sound waves. Using these materials, we show that one is
able to actively control the elastic wave response through
electric bias, resulting in either sound wave attenuation or
amplification, which are the basic ingredients needed to
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synthesize phononic PT symmetry. As we mentioned
earlier, optics offers a base to experimentally realize and
test properties associated with non-Hermitian PT systems.
The reason is the formal equivalence between the
Schrödinger equation and the optical wave equation.
How does this translate to sound waves? The stationary
Schrödinger equation reads

∂2ψðzÞ
∂z2 −

2m
ℏ2

½VðzÞ − E�ψðzÞ ¼ 0; ð1Þ

where ψðzÞ is the wave function, E is the energy, and VðzÞ
is the complex potential. The condition for PT symmetry
in a quantum mechanical system requires the complex
potential to satisfy the condition VðzÞ ¼ V�ð−zÞ. If we
undertake a few substitutions in Eq. (1), VðzÞ − E →
½ω2ρðzÞ=c033ðzÞ�, ψðzÞ → uðzÞ, and −ð2m=ℏ2Þ → 1, we
arrive at an equation of the following form for longitudinal
vibrations in wurtzite structures with hexagonal 6mm
symmetry (refer to the Supplemental Material [17]):

∂2u
∂z2 þ

ω2ρðzÞ
c033ðzÞ

u ¼ 0: ð2Þ

Equation (2) is the 1D elastic wave equation for longi-
tudinal fields where uðzÞ is the displacement along z, ρ is
the mass density, and c033 is the effective stiffness tensor 33
component [refer to Eq. (4) for further details]. In this
context, we can write the conditions for the synthesis of
PT phononic media using realistic materials

ρðzÞ ¼ ρð−zÞ; c033ðzÞ ¼ c0�33ð−zÞ: ð3Þ

These requirements suggest that for real, i.e., lossy materi-
als, an elastic gain compensation is inevitably needed as
described by the imaginary part of the effective stiffness. A
possibility to amplify sound waves is facilitated through the
acoustoelectric effect. When an acoustic field impinges on
a piezoelectric semiconductor slab a coherently oscillating
electric charge is created. Superimposing a sufficiently high
dc electric field E0 corresponding to a supersonic carrier
drift speed (vd > vs) leads to sound amplification by virtue
of phonon emission, an effect known as acoustic
Cherenkov radiation [18,19]. The velocity vs ¼ ω=k is
the sound speed of the semiconductor with wave number k
and vd ¼ μ33E0 corresponds to the drift velocity with the
mobility μ33 [20]. Amplification of sound was first
observed by Hutson et al. in CdS and recently also
investigated in connection with surface wave amplification
and directional control in graphene and GaN [21–23]. The
effective stiffness of the piezoelectric semiconductor is
written in the following form: [18]

c033
c33

¼ 1þ K2
γ þ i ω

ωd

γ þ iðωc
ω þ ω

ωd
Þ ; ð4Þ

where γ ¼ 1 − vd=vs is a drift parameter, whereas ωc ¼
σ=ε33 and ωd ¼ vs=d33 represent the dielectric relaxation
and the diffusion frequency, respectively, where ε33 is the
permittivity, σ the conductivity, and d33 the carrier diffusion
constant.
We begin the study by considering piezoelectric wurtzite

structures whose mechanical response, when waves are
longitudinally polarized, has to fulfill the condition given in
Eq. (3). Various materials can be employed such as GaAs,
GaN, and InSb but we restrict our study to ZnO for its low
conductivity that keeps the drift currents low and for the
relatively small intrinsic plasma frequency that is important
for mechanical applications. It is possible, at moderate
amplification and damping levels, to express the attenu-
ation coefficient as [19]

α ¼ K2

2

ω

vs

γ ωc
ω

γ2 þ ðωc
ω þ ω

ωd
Þ2 : ð5Þ

In Eq. (5) K ¼ e33=
ffiffiffiffiffiffiffiffiffiffiffiffi

c33ε33
p

quantifies the piezoelectric
coupling, where e33 is the piezoelectric constant and c33 the
stiffness of the hexagonal crystal. As one can see in Fig. 1,
the negative (positive) part of the attenuation coefficient α
corresponds to phonon amplification (damping) whose
magnitude around the Cherenkov threshold can be con-
trolled through the electric bias E0. We mentioned earlier
that systems respecting the space-time reflection symmetry
rely on the combined effects of gain and loss. Figures 1(a)
and 1(b) show how these essential features can be tuned and
spectrally shifted by modifying the carrier concentration n
(normalized to the intrinsic concentration ni) and changing
the frequency ω (normalized to the plasma frequency
ωp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nq2=ε∞ε0meff

p

, where q is the electric charge,
meff the effective mass, whereas ε∞ and ε0 are the high
frequency and vacuum permittivity), respectively. When a
dc field is applied, the elastic displacement will follow a
stationary motion and one that varies in time. We only
consider the dynamic one as it suffices for the boundary
value problem that will follow. The elastic wave motion
uðωÞ parallel to the applied electric field and the normal
stress TzzðωÞ are written as time-dependent fields

uðωÞ ¼
X

2

n¼1

δnϕneiknzeiωt;

TzzðωÞ ¼
X

2

n¼1

ηnϕneiknzeiωt: ð6Þ

In Eq. (6) the electric potential ϕn is related to the
displacement via δn and to the stress via ηn

δn ¼ −
e33k2n

c33k2n − ρω2
;

ηn ¼
kn

ω
ffiffiffiffiffiffiffiffiffiffiffi

ρBcB33
p ðδnc33 þ e33Þ; ð7Þ
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normalized to reference parameters ρB and cB33. We employ
an exact model that describes the piezoelectric interaction
in ZnO to second-order accuracy in the mobility μ33 [20].
This theory is well suited in a small signal approximation.
In the bulk of ZnO we obtain two modal solutions with
wave numbers denoted k1 and k2 (refer to the Supplemental
Material [17]). These solutions correspond to one piezo-
electric mode propagating along the electric field direction
and one opposite to it. Note that when the piezoelectric
media is not activated E0 ¼ 0 and k1 ¼ −k2 ¼ ω=vs. In the
unbound ZnO bulk, we take ϕn ¼ 1 and compute uðωÞ
from Eq. (6) with applied electric fields as indicated in
Fig. 1(c), corresponding to phononic attenuation, free
propagation, and gain. These calculations show that we
indeed are able to synthesize PT symmetry for sound
based on the intrinsic piezoelectricity in semiconductor
materials.
In order to satisfy the strict requirements ofPT symmetry

the conditions given in Eq. (3) must be fulfilled. In Fig. 2 we
plot Eq. (4) as a function of E0 and the drift-to-sound
velocity ratio. At the Cherenkov threshold Imfc033g ¼ 0.
Detuning the phononic response below or above this point

gives rise to either a negative or positive effective imaginary
stiffness c033 which is similar, but of opposite sign, to the
behavior of the attenuation coefficient in Fig. 1. Note that
Refc033g and jImfc033gj are symmetric and therefore bal-
anced around the Cherenkov threshold.
As we will see in the following, even when the PT

condition can be met (Fig. 2), it must be borne in mind that
gain and loss are deterministically controlled only when
sound propagates and electrons drift along the same path.
PT symmetry based on the electroacoustic effect is there-
fore challenging because gain or loss does not obey time-
reversal symmetry since the scattering matrix S for a biased
ZnO slab always will be asymmetric, Snm ≠ Smn. To show
that, we compute the scattering parameters for various
biased ZnO slabs at different drift levels according to Fig. 2.
For a single layer we derive analytical expressions for these
coefficients

S11 ¼
2

D
½−δ2ðδ1 þ η1Þeik1h þ δ1ðδ2 þ η2Þeik2h� − 1;

S21 ¼
2

D
½−δ2ðδ1 þ η1Þ þ δ1ðδ2 þ η2Þ�eiðk1þk2Þh;

S22 ¼
2

D
½δ2ðδ1 − η1Þeik2h − δ1ðδ2 − η2Þeik1h� − 1;

S12 ¼
2

D
½δ2ðδ1 − η1Þ − δ1ðδ2 − η2Þ�; ð8Þ

where D¼ðδ1−η1Þðδ2þη2Þeik2h− ðδ1þη1Þðδ2−η2Þeik1h.
In the first scenario, a voltage is applied with an electric

FIG. 1. Gain or attenuation of sound in ZnO at (a) various
carrier concentrations n=ni and for (b) different frequencies. The
vertical dashed-dotted line marks the Cherenkov threshold
(vd ¼ vs). In panel (b) n ¼ ni with a plasma frequency at
9 MHz. (c) From (a) we take the example where n ¼ 103ni
corresponding to a plasma frequency at 280 MHz and plot the
elastic displacements u at the gain or attenuation peaks and where
the electric bias is switched off, E0 ¼ 0.

FIG. 2. c033 is computed versus E0 for ZnO with n ¼ 104ni at
ω ¼ 0.7ωp. Top scale represents the data as a function of vd=vs.
Left(right) axis represents the real(imaginary) part of c033.
At the Cherenkov threshold, vd ¼ vs (dash-dotted line at
E0 ¼ 131.8 kV=m), the effective stiffness c033 is purely real.
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field of EG ¼ 150.0 kV=m across the slab. This field
generates phonon amplification with α ¼ −71 m−1 (at
Imfc033g ¼ 0.21 × 10−3c33) in forward direction and α ¼
8.75 m−1 (at Imfc033g ¼ −0.26 × 10−4c33) in the backward
direction. We predict equivalent jS11j2 ¼ jS22j2 reflectance
at both slab sides in all examples but the single gain slab
exhibits a strong asymmetry between both transmission
channels with increasing frequency. Sound propagation
against the drift flow corresponds to vd=vs < 0 and
produces wave attenuation only (not plotted here). When
the electrons drift symmetrically towards the slab center
coming in from both sides time-reversal symmetry is
preserved as the scattering parameters spectra show in
the middle panel. This setup is a neat way to circumvent
the inherent nonreciprocity. This necessity is illustrated
by the last example where we have balanced loss and
gain in forward direction only, EL ¼ 113.5 kV=m with

α ¼ 71 m−1 but α ¼ 10.04 m−1 in the opposite direction.
Although we intentionally balanced the amount of loss and
gain with the necessary electric bias, the system in the last
example of Fig. 3 does not obey PT symmetry since the
overall energy flow is not controlled and balanced for
forward and backward sound propagation. This challenge
makes it somewhat difficult to smoothly tune the amount of
loss and gain from within an exact towards a broken
PT phase.
Loading the gain and loss components symmetrically as

illustrated in Fig. 4(a) produces time-reversal symmetric
amplification and attenuation in each constituent. However,
as loss dominates since it is inevitably present in all
backward directed flow (vd=vs < 0), we will tune towards
PT symmetry with zero net attenuation by steadily
increasing the phononic gain as plotted in Fig. 4(b). To
obtain the overall scattering parameters for the binary
system shown in Fig. 4(a), we implemented calculations
involving a rigorous expansion, both in terms of radiating

FIG. 3. Scattering parameters for various ZnO slab setups
biased with a voltage source. In all cases, the overall slab
thickness h ¼ 4 cm. Upper panel: Slab is biased in forward
direction compared to the sound direction (left to right),
EG ¼ 150.0 kV=m. Middle panel: Bias in a bidirectional fashion
with EG ¼ 150.0 kV=m and E−G ¼ −EG. Lower panel: Bal-
anced loss and gain through a voltage divider in forward
direction, EG ¼ 150.0 kV=m and EL ¼ 113.5 kV=m. In the
simulations the background is impedance matched to ZnO,
hence, ρB ¼ ρ and cB33 ¼ c33.
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FIG. 4. (a) PT symmetric binary system where the gain (red)
and loss (blue) constituents are biased in an bidirectional fashion.
h ¼ 4 cm and the passive nonpiezoelectric separator region, with
ρB ¼ ρ and cB33 ¼ c33, has thickness s ¼ 0.5 mm. (b) Scattering
parameters spectrum is plotted around the exceptional point
(dashed line) as a function of Eg, whereas EL is locked. Same
parameters are taken as in Fig. 2. (c) α is given for the PT
symmetry structure in (a) along the stacking direction z when
sound propagates forward, backwards, and after a round trip.
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waves on either side of the structure and waveguide modes
within the biased slabs [17]. We lock the amount of loss in
the right blue ZnO slabs at EL ¼ 129.0 kV=m and E−L ¼
−EL such that loss after an acoustic round-trip is fully
balanced, see Fig. 4(c). Then we raise the amount of gain in
the left half of the binary structure by slowly increasing
E−G ¼ −EG up to the point where the imaginary eigen-
values merge toward zero, or as illustrated in Fig. 4(b), a
bidirectional transparent mode sets in which experiences
zero reflection when probed from one end, jS22j2 → 0, but
strong reflection when probed in the reverse direction,
jS11j2 > 1. This location where the transmittance becomes
unitary, jS21j2 ¼ jS12j2 ¼ 1, corresponding to perfect non-
reciprocity in the reflectance is referred to as the excep-
tional point [marked with the dotted line in Fig. 4(b)]. It is
rather difficult to demonstrate the properties of PT
symmetry in its various phases around the exceptional
point since gain and loss cannot be increased smoothly and
simultaneously in a uniform manner. Figure 4(c) illustrates
how the attenuation subsequently balances out towards zero
net gain and loss when tuned at the exceptional point,
EG ≈ 136.0 kV=m. Unidirectional suppression of the
reflectance is the cornerstone of PT symmetry media
and the basic feature in order to design a one-way acoustic
cloak of invisibility [24]. This unique property has been
demonstrated in Fig. 4(b).
In summary, we have demonstrated PT symmetry in

piezoelectric semiconductors and explored the tunability
through simple electric biasing. Since gain and loss in these
media are strictly directional dependent the acoustic reali-
zation is a nontrivial extension from its optical counterpart.
Our simulations predict that phononic PT symmetry
creates strong nonreciprocal reflections from either end
of the structure and that these findings could advance the
progress on, e.g., acoustic camouflage coatings for hiding
submarines from sonar detection. Additional features
associated to the PT symmetry phases such as the
coexistence of absorbing and lasing states for sound are
yet to be explored. The realization of PT non-Hermitian
phononic lattices with peculiar scattering characteristics is
another avenue worth investigating.
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