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M. Petrič,26 L. E. Piilonen,76 C. Pulvermacher,28 J. Rauch,67 E. Ribežl,26 M. Ritter,36 A. Rostomyan,8
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We measure the decay B0
s → K0K 0 using data collected at the Υ(5S) resonance with the Belle

detector at the KEKB e+e− collider. The data sample used corresponds to an integrated luminosity
of 121.4 fb−1. We measure a branching fraction B(B0

s → K0K 0) = [19.6 +5.8
−5.1(stat.) ± 1.0(sys.) ±

2.0(N
B0

sB
0
s

)] × 10−6 with a significance of 5.1 standard deviations. This measurement constitutes

the first observation of this decay.

PACS numbers: 13.25.Hw, 14.40.Nd

The two-body decays B0
s → h+h′−, where h(′) is either a pion or kaon, have now all been observed [1]. In con-
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trast, the neutral-daughter decays B0
s → h0h′0 have yet

to be observed. The decay B0
s → K0K 0 [2] is of partic-

ular interest because the branching fraction is predicted
to be relatively large. In the Standard Model (SM), the
decay proceeds mainly via a b → s loop (or “penguin”)
transition as shown in Fig. 1, and the branching fraction
is predicted to be in the range (16− 27)× 10−6 [3]. The
presence of non-SM particles or couplings could enhance
this value [4]. It has been pointed out that CP asymme-
tries in B0

s → K0K 0 decays are promising observables in
which to search for new physics [5].

FIG. 1. Loop diagram for B0
s → K0K 0 decays.

The current upper limit on the branching fraction,
B(B0

s → K0K 0) < 6.6 × 10−5 at 90% confidence level,
was set by Belle using 23.6 fb−1 of data recorded at the
Υ(5S) resonance [6]. Here, we update this result using
the full data set of 121.4 fb−1 recorded at the Υ(5S).
The analysis presented here uses improved tracking, K0

reconstruction, and continuum suppression algorithms.
The data set corresponds to (6.53 ± 0.66) × 106 B0

sB
0
s

pairs [7] produced in three Υ(5S) decay channels: B0
sB

0
s ,

B∗0s B 0
s or B0

sB
∗0
s , and B∗0s B ∗0s . The latter two chan-

nels dominate, with production fractions of fB∗0
s B 0

s
=

(7.3± 1.4)% and fB∗0
s B ∗0

s
= (87.0± 1.7)% [8].

The Belle detector is a large-solid-angle magnetic spec-
trometer consisting of a silicon vertex detector (SVD), a
50-layer central drift chamber (CDC), an array of aero-
gel threshold Cherenkov counters (ACC), a barrel-like ar-
rangement of time-of-flight scintillation counters (TOF),
and an electromagnetic calorimeter (ECL) comprising
CsI(Tl) crystals. These detector components are located
inside a superconducting solenoid coil that provides a
1.5 T magnetic field. An iron flux-return located outside
the coil (KLM) is instrumented to detect K0

L mesons and
to identify muons. The detector is described in detail
elsewhere [9, 10]. The origin of the coordinate system is
defined as the position of the nominal interaction point
(IP). The +z axis is aligned with the direction opposite
the e+ beam and is parallel to the direction of the mag-
netic field within the solenoid. The +x axis is horizontal
and points towards the outside of the storage ring; the
+y axis points vertically upward.

Candidate K0 mesons are reconstructed via the decay
K0

S → π+π− using a neural network (NN) technique [11].
The NN uses the following information: the K0

S momen-
tum in the laboratory frame; the distance along z be-

tween the two track helices at their closest approach; the
flight length in the x-y plane; the angle between the K0

S

momentum and the vector joining the K0
S decay vertex

to the IP; the angle between the pion momentum and
the laboratory-frame direction in the K0

S rest frame; the
distance-of-closest-approach in the x-y plane between the
IP and the two pion helices; and the pion hit information
in the SVD and CDC. The selection efficiency is 87% over
the momentum range of interest. We also require that the
π+π− invariant mass be within 12 MeV/c2 (about 3.5σ
in resolution) of the nominal K0

S mass [1].
To identify B0

s → K0
SK

0
S candidates, we define two

variables: the beam-energy-constrained mass Mbc =√
E2

beam − |~pB |2c2/c2; and the energy difference ∆E =
EB − Ebeam, where Ebeam is the beam energy and EB

and ~pB are the energy and momentum, respectively, of
the B0

s candidate. These quantities are evaluated in the
e+e− center-of-mass (CM) frame. We require that events
satisfy Mbc > 5.34 GeV/c2 and −0.20 GeV < ∆E <
0.10 GeV.

To suppress background arising from continuum
e+e− → qq (q = u, d, s, c) production, we use a sec-
ond NN [11] that distinguishes jet-like continuum events

from more spherical B
(∗)0
s B

(∗)0
s events. This NN uses the

following input variables, which characterize the event
topology: the cosine of the angle between the thrust
axis [12] of the B0

s candidate and the thrust axis of the
rest of the event; the cosine of the angle between the B0

s

thrust axis and the +z axis; a set of 16 modified Fox-
Wolfram moments [13]; and the ratio of the second to
zeroth (unmodified) Fox-Wolfram moments. All quanti-
ties are evaluated in the CM frame. The NN is trained
using Monte Carlo (MC) simulated signal events and qq
background events. The MC samples are obtained us-
ing EvtGen [14] for event generation and Geant3 [15]
for modeling the detector response. The NN has a
single output variable (CNN) that ranges from −1 for
background-like events to +1 for signal-like events. We
require CNN > −0.1, which rejects approximately 85% of
qq background while retaining 83% of signal decays. We
subsequently translate CNN to a new variable

C ′NN = ln

(
CNN − Cmin

NN

Cmax
NN − CNN

)
, (1)

where Cmin
NN = −0.1 and Cmax

NN is the maximum value of
CNN obtained from a large sample of signal MC decays.
The distribution of C ′NN is well-modeled by a Gaussian
function.

After applying all selection criteria, approximately
1.0% of events have multiple B0

s candidates. For these
events, we retain the candidate having the smallest value
of χ2 obtained from the deviations of the reconstructed
K0

S masses from their nominal values [1]. According to
MC simulation, this criterion selects the correct B0

s can-
didate > 99% of the time.
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We measure the signal yield by performing an un-
binned extended maximum likelihood fit to the variables
Mbc, ∆E, and C ′NN. The likelihood function is defined
as

L = e−
∑

j Yj ·
N∏
i

∑
j

YjPj(M
i
bc,∆E

i, C ′iNN)

 , (2)

where Yj is the yield of component j; Pj(M
i
bc,∆E

i, C ′iNN)
is the probability density function (PDF) of component
j for event i; j runs over the two event categories (signal
and qq background); and i runs over all events in the sam-
ple (N). Backgrounds arising from other B0

s and non-B0
s

decays were studied using MC simulation and found to be
negligible. As correlations among the variables Mbc, ∆E,
and C ′NN are found to be small, the three-dimensional
PDFs Pj(M

i
bc,∆E

i, C ′iNN) are factorized into the prod-
uct of separate one-dimensional PDFs.

The signal PDF is defined as

Psig = fB∗0
s B ∗0

s
PB∗0

s B ∗0
s

+ fB∗0
s B 0

s
PB∗0

s B 0
s

(3)

+(1− fB∗0
s B ∗0

s
− fB∗0

s B 0
s

)PB0
sB

0
s
,

where PB∗0
s B ∗0

s
, PB∗0

s B 0
s

, and PB0
sB

0
s

are the PDFs for sig-

nal arising from Υ(5S) → B∗0s B ∗0s , (B∗0s B 0
s + B ∗0s B0

s ),
and B0

sB
0
s decays. The Mbc and C ′NN PDFs are mod-

eled with Gaussian functions, and the ∆E PDFs are
each modeled with a sum of two Gaussian functions
having a common mean. All parameters of the signal
PDF are fixed to the corresponding MC values. The
peak positions for Mbc and ∆E are adjusted according
to small data-MC differences observed in a control sam-
ple of B0

s → D−s π
+ decays [8]. As this control sample

has only modest statistics, the resolutions for Mbc, ∆E,
and C ′NN, and the peak position for C ′NN, are adjusted
for data-MC differences using a high statistics sample of
B0 → D−(→ K+π−π−)π+ decays. For qq background,
the Mbc, ∆E, and C ′NN PDFs are modeled with an AR-
GUS function [16], a first-order Chebyshev polynomial,
and a Gaussian function, respectively. All parameters of
the qq background PDFs except for the endpoint of the
ARGUS function are floated in the fit.

The results of the fit are 29.0 +8.5
−7.6 signal events and

1095.0 +33.9
−33.4 continuum background events. Projections

of the fit are shown in Fig. 2. The branching fraction is
calculated via

B(B0
s → K0K 0) =

Ys
2 ·NB0

sB
0
s
· (0.50) · B2K0 · ε

, (4)

where Ys is the fitted signal yield; NB0
sB

0
s

= (6.53 ±
0.66)×106 is the number of B0

sB
0
s events; BK0 = (69.20±

0.05)% is the branching fraction for K0
S → π+π− [1];

and ε = (46.3 ± 0.1)% is the signal efficiency as deter-
mined from MC simulation. The efficiency is corrected
by a factor 1.01 ± 0.02 for each reconstructed K0

S , to

account for a small difference in K0
S reconstruction effi-

ciency between data and simulation. This correction is
estimated from a high statistics sample of D0 → K0

Sπ
0

decays. The factor 0.50 accounts for the 50% probability
for K0K 0 → K0

SK
0
S (since K0K 0 is CP -even). Inserting

these values gives B(B0
s → K0K 0) = (19.6 +5.8

−5.1)× 10−6,
where the error is statistical.

The systematic uncertainty on B(B0
s → K0K 0) arises

from several sources, as listed in Table I. The uncertain-
ties due to the fixed parameters in the PDF shape are
estimated by varying the parameters individually accord-
ing to their statistical uncertainties. For each variation
the branching fraction is recalculated, and the difference
with the nominal branching fraction is taken as the sys-
tematic uncertainty associated with that parameter. We
add together all uncertainties in quadrature to obtain
the overall uncertainty due to fixed parameters. The un-
certainties due to errors in the calibration factors and
the fractions f

B
(∗)
s B

(∗)
s

are evaluated in a similar manner.

To test the stability of our fitting procedure, we gener-
ate and fit a large ensemble of MC pseudo-experiments.
By comparing the mean of the fitted yields with the
input value, a bias of −2.6% is found. We attribute
this bias to our neglecting small correlations among the
fitted observables. An 0.9% systematic uncertainty is
assigned due to the CNN selection; this is obtained by
comparing the selection efficiencies in MC and data for
the B0 → D−(→ K+π−π−)π+ control sample. We as-
sign a 2.0% systematic uncertainty for each reconstructed
K0

S → π+π−; this is determined using a D0 → K0
Sπ

0

sample. The uncertainty on ε due to the MC sample size
is 0.2%. The total of the above systematic uncertainties
is calculated as their sum in quadrature. In addition,
there is a 10.1% uncertainty due to the number of B0

sB
0
s

pairs. As this large uncertainty does not arise from our
analysis, we quote it separately.

TABLE I. Systematic uncertainties on B(B0
s → K0K 0).

Those listed in the upper section are associated with fitting
for the signal yields and are included in the signal significance.

Source Uncertainty (%)

PDF parametrization 0.2

Calibration factor +0.9
−0.8

f
B

(∗)
s B

(∗)
s

+1.2
−1.1

Fit bias +0.0
−2.6

K0
S → π+π− reconstruction 4.0

CNN selection 0.9

MC sample size 0.2

B(K0
S → π+ π− ) 0.1

Total (without N
B0

sB
0
s

) +4.4
−5.1

N
B0

sB
0
s

10.1

The signal significance is calculated as
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FIG. 2. Projections of the 3D fit to the real data: (a) Mbc in −0.11 GeV < ∆E < 0.02 GeV and C′NN > 0.5; (b) ∆E
in 5.405 GeV/c2 < Mbc < 5.427 GeV/c2 and C′NN > 0.5; and (c) C′NN in 5.405 GeV/c2 < Mbc < 5.427 GeV/c2 and
−0.11 GeV < ∆E < 0.02 GeV. The points with error bars are data, the (green) dashed curves show the signal, (magenta)
dotted curves show the continuum background, and (blue) solid curves show the total. The χ2/(# of bins) values of these fit
projections are 0.30, 0.43, and 0.26, respectively, which indicate that the fit gives a good description of the data. The three
peaks in Mbc arise from Υ(5S)→ B0

sB
0
s , B

∗0
s B 0

s +B0
sB
∗0
s , and B∗0s B ∗0s decays.

√
−2 ln(L0/Lmax), where L0 is the likelihood value

when the signal yield is fixed to zero, and Lmax is
the likelihood value of the nominal fit. We include
systematic uncertainties in the significance by convolv-
ing the likelihood function with a Gaussian function
whose width is equal to that part of the systematic
uncertainty that affects the signal yield. We obtain a
signal significance of 5.1 standard deviations; thus, our
measurement constitutes the first observation of this
decay.
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FIG. 3. Background subtracted sPlot distributions of
M(π+π−) for the (a) higher momentum and (b) lower mo-
mentum K0

S candidates.

The background subtracted sPlot [17] distributions of

M(π+π−) are shown in Fig. 3, where the K0
S selection

is removed for the π+π− pair being plotted. No B0
s →

K0
Sπ

+π− contribution is observed. We check this quanti-
tatively by performing our signal fit for events in the mass
sidebands of eachK0

S [M(π+π−) ∈ (0.460, 0.485) GeV/c2

and M(π+π−) ∈ (0.510, 0.530) GeV/c2]. The extracted
signal yields, −0.7 +2.9

−2.1 and 1.6 +2.2
−1.2 for the higher mo-

mentum K0
S and lower momentum K0

S , respectively, are
consistent with zero. We calculate the expected num-
ber of B0

s → K0
Sπ

+π− events in our signal sample us-
ing MC simulation and the measured branching fraction,
B(B0

s → K0π+π−) = 15.0×10−6 [18]; the result is 0.001.
In summary, we report the first observation of the de-

cay B0
s → K0K 0. The branching fraction is measured to

be

B(B0
s → K0K 0) = (19.6 +5.8

−5.1 ± 1.0 ± 2.0)× 10−6,

where the first uncertainty is statistical, the second is
systematic, and the third reflects the uncertainty due to
the total number of B0

sB
0
s pairs. This value is in good

agreement with the SM predictions [3], and it implies
that the Belle II experiment [19] will reconstruct over
1000 of these decays. Such a sample would allow for
a much higher sensitivity search for new physics in this
b→ s penguin-dominated decay.
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