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Nanoparticles formed within an ablation plume produced by the impact of a nanosecond laser pulse on the
surface of an aluminum target have been directly measured using small-angle x-ray scattering. The target was
immersed in an oxygen-nitrogen gas mixture at atmospheric pressure with the O, /N, ratio being precisely
controlled. The results for an increasing oxygen content reveal remarkable effects on the morphology of the
generated particles, which include a decrease in the particle volume but a marked increase in its surface
ruggedness. Molecular dynamics simulations using a reactive potential and performed under similar
conditions as the experiment reproduce the experimental trends and show in detail how the shape and
surface structure of the nanoparticles evolve with increasing oxygen content. This good agreement between
in situ observations in the plume and atomistic simulations emphasizes the key role of chemical reactivity
together with thermodynamic conditions on the morphology of the particles thus produced.

DOI: 10.1103/PhysRevLett.115.246101

Laser ablation is the basis of key technologies such as
pulsed laser deposition (PLD) for the production of nano-
structures or thin films [1,2]. Metallic oxides, in particular,
have received significant attention owing to promising
optoelectronic applications with prominent examples being
Y-Ba-Cu oxide for high-temperature superconductor thin
films [3], or ZnO transparent conducting oxide for displays
and solar cells [4]. The surface morphology and chemical
composition of the thin films are determined by the proper-
ties of the oxide nanoparticles formed in the plume before
their deposition onto the substrate [5]. However, the physical
and chemical processes involved in particle formation in
laser ablation plumes are numerous and complex and,
especially in the case of metal oxides, not understood in
great detail. In situ observation of oxide nanoparticles formed
within an ablation plume is required, therefore, primarily to
understand the mechanisms involved in thin film formation,
but equally importantly, to provide experimental control of
the thin film properties through experimental conditions.
Ultraviolet Rayleigh scattering (RS) has been used to
visualize a cloud of gas-suspended nanoparticles in the
range of typically several nm [6]. Photoluminescent (PL)
nanoparticles can be detected efficiently from their emission
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spectra [7]. Time-resolved images of nanoparticles produced
in an ablation plume have been obtained in situ using RS and
PL techniques [8]. However, the information provided by
these optical diagnostics is limited to the macroscopic
hydrodynamic properties of the particles, including their
kinetic energy and the morphology of the particle cloud.
Although the global thermodynamic properties in an ablation
plume are reasonably well understood owing to dedicated
modeling [9—11], the influence of a reactive ambient gas on
individual particles, and, in particular, on their structure at the
microscopic level, has remained undocumented so far.

In this Letter, we report observations on the influence of
oxidation on the morphology of nanoparticles formed
within an ablation plume produced by infrared nanosecond
laser pulses impacting on a pure aluminum target immersed
in a reactive oxygen-nitrogen gas mixture at atmospheric
pressure. The small-angle x-ray scattering (SAXS) tech-
nique was used to enable in situ observations within the
plume [12]. To the best of our knowledge, the influence of
the oxygen content in the ambient gas on the morphological
parameters of free particles in an ablation plume could be
observed for the first time. The experimental results are
interpreted using dedicated simulations performed under

© 2015 American Physical Society
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similar conditions and based on molecular dynamics with a
reactive potential. The good agreement between the experi-
ment and the simulation emphasizes the importance of
chemical and, especially, oxidation reactions on the mor-
phology of the generated nanoparticles. The success of the
present approach establishes molecular simulation as a
powerful tool for describing nucleation processes within an
ablation plume, as a complementary method to traditional
theoretical approaches based on classical or coarse-grained
descriptions such as hydrodynamics [9], gas dynamics [10],
or mesoscale Monte Carlo simulations [11].

The experiment was performed at the SOLEIL synchro-
tron facility in Saclay, France. Pulses from a
Nd:YAG laser at 1064 nm with a pulse energy of
0.57 mJ, a pulse duration of 5 ns, and a repetition rate of
20 kHz were focused on the sample surface on a spot
of 110 ym in diameter, resulting in an irradiance of
1.2 GW/cm? impacting the aluminum target [Fig. 1(a)].
A permanent cloud of nanoparticles was formed above the
target with a hemispherical form of several mm in diameter,
as reported in a previous work [13]. An oxygen-nitrogen gas
mixture was passed through the reaction chamber containing
the target plate, in a direction perpendicular to the ablation
laser beam with a flow rate of 1 liter per minute and an
oxygen volume content ¢ varying from 0% to 20% adjusted
by mass flow controllers. Along the axis perpendicular to the
ablation laser beam and the gas flow, an x-ray beam [see
Fig. 1(a)] delivered by the SWING beam line [14], entered
and exited the ablation chamber through x-ray transparent,
air-tight mica windows. The MHz repetition rate of the
SWING beam line allowed the x-ray beam to be considered
as continuous. The beam, with a cross section of
80 x 300 um? (height x width), passed through the middle
of the ablation plume. The height of the x-ray beam was set
to 0.8 mm above the target surface, which was found with a
vertical profile of the plume to optimize the scattering signal.
For this x-ray beam position, we expect a uniform mixing
between the aluminum vapor and the ambient gas resulting
from the mutual diffusion of the two species across their
interface. An x-ray energy of 12 keV, corresponding to a
wavelength of 1 A, was used for these measurements. The
distance between the ablation plume and the detector was set
to 4 meters and the g range covered in this configuration was
0.0022 to 0.2 A™', where g = (4x/2)sin(§), with @ being
the scattering angle with respect to the axis of the x-ray beam
and A its wavelength. For the given detection system, the
observable nanoparticle sizes ranged from 1.6 to 143 nm.
Such a setting is optimized for aluminum oxides with a size
from several nm to tens of nm, as can be estimated from our
previous work [13].

The circular scattering patterns recorded on the 2D
detector were integrated to yield curves of scattered
intensity 7 in cm™! as a function of g. The background
scattering intensity was first recorded without laser firing.
Then, five measurements were performed in sequence
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FIG. 1 (color online). (a) Schematic of the experimental setup
showing the aluminum target plate (in gray), the ablation laser
beam (in red), the ablation plume (in blue), incident and scattered
X rays, a typical aluminum oxide nanoparticle (from the simu-
lation), and a scattering pattern. (b) Typical x-ray scattering
intensity /(g) on a log-log scale (limited to the range of ¢ from
0.01 to 0.20 A1), as obtained for nanoparticles produced in an
ambient gas with 15% oxygen (in red), and its fits based on the
unified scattering function (dotted green line) and the Porod law
near ¢ = 0.1 A~ (blue line) with a slope of —2.66. (c) TEM
picture of nanoparticles collected by deposition during the x-ray
scattering experiment in an ambient gas with 20% oxygen.

without interrupting the laser, once a permanent plume
was established several seconds after the beginning of the
laser firing. An acquisition time of 1 s was necessary to
obtain sufficient signal intensity. Figure 1(b) shows the
measured scattered x-ray intensity / as a function of ¢ with
particles produced within a mixture of 15% O, and 85% N,
(co = 15%) in the ambient gas. The experimental intensity
I(g) can be fitted using a single level unified scattering
function [15] which contains two terms corresponding to
the Guinier function [16], and the Porod law that is a power
law with an exponent of —d, where d is called the Porod
slope. The first term is determined by the geometrical
parameters of the particles such as their gyration radius R,
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FIG. 2 (color online). Average gyration radius (a), volume (b),
and Porod slope (c) of nanoparticles produced in the ablation
plume as a function of oxygen content in the ambient gas.

and volume V, while the second term reflects the surface
structure of the particles. For compact objects with a sharp
interface, the Porod slope is d = 4. In our experiment, the
fitting was performed using the IRENA macros package
developed by Ilavsky et al. [17]. The obtained results are
illustrated in Fig. 1(b), together with the unified fit and the
power-law decay fit, resulting in this case in a value of the
Porod slope close to d = 2.7 that indicates a significant
degree of roughness. (See the Supplemental Material for
more details about the experimental data fitting [18]). The
nanoparticles produced were collected during the x-ray
scattering experiment with an ambient gas of 20% oxygen
content. TEM observations confirmed the existence of
nanoparticles with sizes compatible with the x-ray mea-
surements, even though the particles had further agglom-
erated into large chains, as shown in Fig. 1(c).

The morphological parameters extracted from the scattered
x-ray intensities measured for different oxygen contents in
the ambient gas are shown in Fig. 2. The average gyration
radius R, the volume V' of the nanoparticles thus produced,
and the Porod slope d are, respectively, shown as a function
of the oxygen content cq in Figs. 2(a), (b) and (c). As cq
increases, R, first slightly decreases, and then increases to
greater values before decreasing again. Minimal values of the
gyration radius R, can be found for oxygen contents between
2% and 5%. In contrast, the volume V exhibits a rather
monotonic decrease with increasing cq except for a minor
fluctuation at ¢cq = 1.5%. The Porod slope has a measured
value close to 4 at low oxygen content, clearly indicating
sharp interfaces. As the amount of oxygen in the gas
increases, this quantity exhibits a sharp decrease above

1.5% of oxygen followed by a more gentle increase until
the concentration reaches 5%, before globally decreasing
toward values as low as 2.7 as the oxygen concentration
approaches that of atmospheric air. Those variations in the
1.5%—5% range remarkably correlate with the region where
the gyration radius is minimal. Therefore, the present SAXS
measurements clearly demonstrate the effects of an increas-
ing oxygen content in the ambient gas from 0% to 20% on
the overall morphology of the nanoparticles, which so far can
be summarized as (i) a decrease in the average volume of the
produced nanoparticles, (ii) an evolution of the surface
structure of the nanoparticles globally from a sharp interface
to one that is rough, and (iii) the existence of an intermediate
range of oxygen content, between 2% and 5%, where the
particles again exhibit sharp surfaces as in pure nitrogen, but
with a smaller gyration radius.

To interpret the experimental results presented above at
the atomistic level, the annealing process of aluminum
nanoparticles in ambient gas containing oxygen at various
quantities was modeled using the Streitz-Mintmire (SM)
reactive potential [19], which stands as one of the few
available models for aluminum oxides [20-23] and is
expected to provide a good description of a large variety
of annealing products. The SM model performs satisfac-
torily for small Al-O clusters with varying size and
stoichiometry when compared with recent electronic struc-
ture calculations [24]. The computational protocol relies on
molecular dynamics (MD) simulations initiated by ran-
domly placing fixed numbers of Al and O atoms, N ,; and
No, respectively, in a soft spherical container, the stoichi-
ometry being determined by the oxygen-aluminum ratio
Xo/a1 = No/N a1, under the constraint of a total number of
atoms N = N, + N = 2000. This initial vapor was
thermalized at 4000 K and cooled down in a stepwise
way, the temperature being decreased by a constant factor
so that it reached 300 K after 9 steps. Temperature was
imposed on the system by a standard Nosé-Hoover
thermostat, and at each temperature the MD trajectories
were propagated for 50 ps with a 0.5 fs time step, only the
last 30 ps being kept for calculating physical properties and
the first 20 ps only serving as equilibration. The oxygen-
aluminum ratio was varied from xg/5; = 0 to xg 5 ~ 10,
and for each value of xg,,; the simulation time was thus
450 ps, which would have hardly been practical with
electronic structure calculations.

Figure 3 shows several properties of the simulated
nanoparticles with the structures obtained at the end of
the annealing simulation and as a function of increasing
oxygen content [Figs. 3(a)-3(b)]. Additional calculations
for 500 atoms show only marginal size effects on those
properties (see the Supplemental Material [18]), indicating
that our computational protocol is robust. Snapshots of
those structures at selected oxygen contents are also
depicted [Figs. 3(c)-3(g)]. More precisely, we have evalu-
ated the extent of the metallic part within a nanoparticle by
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FIG. 3 (color online).

Influence of the oxygen content in the ambient gas on the morphological properties of simulated aluminum

oxide nanoparticles formed under an oxygen atmosphere. (a) Average radius of the pure aluminum core and total number of connected
atoms (Al and O) in the nanoparticles. (b) Average gyration radius of the nanoparticles and calculated Porod slope. The green, blue, and
pink background regions in (a) and (b) indicate the different ranges of the oxygen-aluminum ratio, where the nanoparticles contain a
metallic core, are fully oxidized, or are surrounded by residual gas, respectively. Panels (c) to (g) depict typical structures obtained at
300 K for simulations with different oxygen ratios x,51. The colors of the atoms in (c) through (g) have the following correspondences:

gray for metallic Al, red for oxygen, and yellow for oxidized Al.

counting the number of aluminum atoms only bound to
other metal atoms and not to any oxygen atom using a
simple distance criterion of twice the corresponding
diatomic bond length at equilibrium as the cutoff distance
(4.39, 3.97, and 3.16 A for Al-Al, Al-O, and O-O bonds,
respectively). The total number of atoms (Al 4 O) that
constitute the condensed nanoparticle was evaluated by
identifying the largest percolated fragment, an atom being
considered as belonging to a given fragment if it is
connected to other atoms from this fragment according
to the above-defined distance criterion. The gyration radius
was calculated for those connected nanoparticles, thus
avoiding the possible contribution of the residual gas.
Finally, the surface roughness of the simulated nanoparticles
was determined as the Porod slope, which best fitted the
corresponding calculated scattered intensity [25] in the region
of 0.05 A~ < g <1 A=, which is relevant for the present
nanometer-sized clusters and corresponds quite well to the
experimental detection range (see the Supplemental Material
[18] for more details about the theoretical Porod slope
calculation).

In the absence of oxygen, 2000 aluminum atoms sponta-
neously form polycrystalline nanoparticles with few stacking
faults [Fig. 3(c)]. For N z; = 500 the nanoparticles are icosa-
hedral, which is the expected equilibrium shape for the SM
potential thatessentially reduces to a standard embedded-atom
model for a pure metal [19]. It is remarkable that our
modeling, spanning much shorter time scales than the actual

experiment, is able to produce such highly ordered nano-
particles. We next consider the effects of a moderate amount
of oxygen added to the initial aluminum gas. Upon cooling,
the gas entirely condenses into a phase of metal nano-
particles surrounded by an oxide shell [Fig. 3(d)], whose
thickness increases at the expense of the metal as xg/a;
increases. According to Fig. 3(a), complete oxidation is
reached at an oxygen-aluminum ratio as low as 0.25. In this
regime [zone I in Figs. 3(a)—(b)], the nanoparticles remain
essentially spherical, compact and with a smooth surface as
inferred from the high Porod slope close to 4 [Fig. 3(b)].
With higher amounts of oxygen (regime II), all available
atoms still condense into the nanoparticle but the annealed
structure is fully oxidized and increasingly deformed
[Fig. 3(e)]. A decreasing Porod slope together with an
increasing gyration radius for xo/s < 0.4 correlate here
with a more irregular shape. However, close to the 1:1
stoichiometry, the relatively stable AlO oxide is preferen-
tially obtained [Fig. 3(f)] with a more pronounced local
chemical ordering best seen with the simulation for
N = 500 (see the Supplemental Material [18]), associated
with more compact shapes, thus smaller gyration radii and
higher Porod slopes. At further increased oxygen content
(regime III), the nanoparticles can no longer absorb all
available oxygen and become surrounded by residual O,, as
illustrated in Fig. 3(g). Restricting the structural analysis to
the dominant (largest connected) fragment, the nanopar-
ticles are found to be increasingly disordered and even
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ramified, the residual gas hindering complete condensation.
The ramified character of the nanoparticles is associated
with an increase in both gyration radius and surface
roughness, thus corresponding to a decrease in the Porod
slope. As the oxygen content further increases beyond
Xo/a1 > 2, aluminum atoms can no longer bind all available
oxygen atoms and the oxide nanoparticle shrinks while
keeping a highly ramified structure.

The experimental measurements can now be discussed in
the light of the above computational results. First, the
observed decrease of the average particle volume as the
oxygen content increases can be understood by a decrease
of the total number of atoms contained in the major
nanoparticle fragment, because of the saturation of the
oxidation process. An excess of oxygen with respect to
aluminum can stop the nucleation process at an early stage,
leaving small free particles in the cloud. Concerning the
particle surface structure, it is quite clear that at very low
oxygen content, the observed large Porod slope and
relatively reduced gyration radius both correspond to
compact metallic nanoparticles with a smooth surface.
As the oxygen content is increased, the outer layer of
the particles is first oxidized. However, at higher oxygen
content the particle surface becomes more rugged, which
explains the observed dip in the Porod slope as soon as
some oxygen is introduced into the system. At specific
stoichiometries such as xg,5; = 1, stable aluminum oxides
can be obtained, as depicted by Fig. 3(f). Such particular
stoichiometries could explain the experimentally observed
local maximum in the Porod slope and the local minimum
in the gyration radius at cg = 5%. As the oxygen content
further increases beyond 5%, the decrease of the Porod
slope and the increase of the gyration radius observed in the
experiment both correspond well to the disordered and
ramified surface structures predicted by the simulation.
Even though a detailed quantitative comparison is not
possible because there is no directly available relation
between the oxygen content in the ambient gas cg and the
oxygen-aluminum ratio xg,; used in the simulation, the
overall agreement between experiment and simulation is
striking. This indicates that we have indeed succeeded in
describing the structural features of the nanoparticles
formed in the ablation plume using atomistic simulation.

In conclusion, the use of an intense x-ray beam delivered
by a synchrotron has allowed in situ characterization of
nanoparticles produced in an ablation plume induced by an
infrared ns laser pulse on the surface of an aluminum target.
Morphological parameters such as the gyration radius,
volume, and surface structure of the generated particles
could be inferred from SAXS measurements as a function
of the oxygen content in the ambient gas. A remarkable
finding is the effect of oxidation on the surface structure of
the nanoparticles, which become increasingly rough with
increasing oxygen content. All observed trends were
correctly reproduced by the dedicated MD simulation of

nanoparticle formation using a reactive potential. The
complementary information obtained at the atomistic level
sheds light on the different nanoparticle morphologies
ranging from a metallic core-oxidized shell with a smooth
surface at low oxygen content, to being fully oxidized with
a much more amorphous and ramified surface in the
oxygen saturated regime. The good agreement between
in situ observations and the modeling based on reactive
molecular dynamics highlights the importance of the
chemical reactions for the determination of the morphology
of the nanoparticles produced in ablation plumes, a key
element that is absent in the traditional macroscopic models
usually employed to address PLD processes. Future work
could be devoted to extending this methodology to other
oxides of application relevance such as titanium or silver.
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