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Anton Hörl, Andreas Trügler, and Ulrich Hohenester∗

Institut für Physik, Karl–Franzens–Universität Graz, Universitätsplatz 5, 8010 Graz, Austria
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We theoretically investigate electron energy loss spectroscopy (EELS) of metallic nanoparticles in
the optical frequency domain. Using a quasistatic approximation scheme together with a plasmon
eigenmode expansion, we show that EELS can be rephrased in terms of a tomography problem. For
selected single and coupled nanoparticles we extract the three-dimensional plasmon fields from a
collection of rotated EELS maps. Our results pave the way for a fully three-dimensional plasmon-
field tomography and establish EELS as a quantitative measurement device for plasmonics.
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Electron energy loss spectroscopy (EELS) has emerged
as an ideal tool for the study of surface plasmon po-
laritons (SPPs) and particle plasmons [1]. For SPPs,
electrons with kinetic energies of a few to hundreds of
keV penetrate through a metal film and excite surface
and bulk plasmons, whose resonance frequencies can be
directly extracted from the energy loss spectra [2, 3].
By raster scanning the electron beam over a plasmonic
nanoparticle, one can extract both the resonances and
field maps of the particle plasmons [4, 5]. This technique
has been extensively used in recent years to map out the
plasmon modes of nanotriangles [5–7], nanorods [4, 8–
10], nanodisks [11], nanocubes [12], nanoholes [13], and
coupled nanoparticles [14–17].

Despite its success and widespread application, the in-
terpretation of plasmonic EELS data remains unclear.
In [18] the authors speculated that EELS renders the
photonic local density of states (LDOS), a quantity of
immense importance in nano optics [19], but the inter-
pretation was put in question in [20]. A detailed compar-
ison between LDOS and EELS was recently given in [21],
where the authors provided an intuitive interpretation of
different measurement schemes in terms of an eigenmode
expansion. It should be noted that the controversy only
concerns the interpretation, whereas the theoretical de-
scription of EELS maps is well established [1] and very
good agreement between experiment and simulation has
been achieved [5, 8, 11, 12].

In this paper we challenge the interpretation of EELS
maps of plasmonic nanoparticles, and rephrase the prob-
lem in terms of a tomography scheme. For sufficiently
small nanoparticles, where the quasistatic approxima-
tion can be employed, we expand the particle fields in
terms of plasmonic eigenmodes [21–23] and the EELS
signal becomes a simple spatial average along the elec-
tron propagation direction. We show at the example of
single and coupled nanorods that the extraction of plas-
mon fields from EELS data can be reduced to an inverse
Radon transformation, which is at the heart of most mod-
ern computer tomography algorithms [24]. Otherwise the
field extraction can be formulated in terms of an inverse
problem which can be solved by optimization techniques.

EELS simulation.—Electron energy loss is a two-step
process, where the electron first excites a surface plasmon
and, in turn, the electron has to perform work against the
induced surface plasmon field. The energy loss becomes
[1, 2]

∆E = e

∫
v ·Eind[re(t), t] dt =

∫ ∞
0

~ωΓEELS(ω) dω ,

(1)
where −e and v are the charge and velocity of the elec-
tron, respectively, and Eind is the electric field of the
surface plasmon evaluated at the electron positions. In
the second expression of Eq. (1) we have spectrally de-
composed the different loss contributions and have intro-
duced the loss probability ΓEELS. A similar expression
can also be obtained from a fully quantum-mechanical
description scheme [1]. For nanoparticles much smaller
than the wavelength of light one can employ the qua-
sistatic limit by keeping only the scalar potential and
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FIG. 1: (Color online) Schematics of EELS tomography. An
electron beam is raster-scanned over a metallic nanoparticle,
and EELS maps are recorded for different rotation angles θ.
The main panel shows the isosurface and contour lines for the
modulus of the dipolar surface plasmon potential, and the
insets report the different EELS maps. From the complete
collection of maps one can reconstruct the plasmon fields, as
described in text (positions of reconstruction planes used in
Figs. 2 and 3 are indicated in main panel).
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FIG. 2: (Color online). (a) EELS spectrum for silver nanorod
with dimensions of 50× 15× 7 nm3 and for the two beam po-
sitions indicated with circles in the inset. The inset also re-
ports the potential maps for the dipole and quadrupole mode
at z = 0. The dashed lines indicate the positions of the planes
where the potentials are reconstructed from the collection of
EELS maps. (b–e) Potential maps reconstructed from EELS
maps (left panels) and potential maps (right) for dipole mode
(upper panels) and quadrupole mode (lower panel). In the
simulations we assume a kinetic electron energy of 200 keV
and use a dielectric constant of 1.6 for the embedding medium.

performing the static limit for the Green functions, while
retaining the full frequency dependence for the material
permittivities [1]. We are then led to [1, 25]

ΓEELS(R0, ω) = − e2

π~v2

∫ ∞
−∞

dz dz′ (2)

×=m
[
e−iωz/vGind(re, r

′
e, ω)eiωz

′/v
]
dzdz′

for the loss probability. Here Gind is the Green func-
tion in the quasistatic limit that describes the response
of the metallic nanoparticle [1, 20]. We next introduce
plasmonic eigenmodes [21–23] defined through∫

∂Ω

∂G(s, s′)

∂n
σk(s′) da′ = λkσk(s) , (3)

where λk and σk(s) denote the plasmonic eigenvalues and
eigenmodes, respectively, and ∂G/∂n is the derivative
of the Green function of an unbounded medium with
respect to the outer surface normal. The eigenmodes
are orthogonal in the sense

∫
σk(s)G(s, s′)σk′(s) dada′ =

δkk′ and can be chosen real [22, 23]. Let φk(r) =∫
∂Ω
G(r, s)σk(s) da denote the potential of the k’th

eigenmode. The induced Green function can then be de-
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FIG. 3: (Color online). Same as Fig. 2 but for coupled
nanorods. The particle and simulation parameters are the
same as those given in the caption of Fig. 2, the gap distance
between the nanoparticles is 5 nm. In the inset we report the
potentials for the bonding and antibonding modes. (b-e) Re-
constructed and true potential maps at different x-positions,
reported in the panels, as measured with respect to the gap
center. For clarity, the potentials for the bonding mode are
multiplied by a factor of three.

composed into these eigenmodes according to [21]

Gind(r, r′) = −
∑
k

λk ± 2π

Λ + λk
φk(r)φk(r′)

1

ε(r′)
(4)

with Λ = 2π(ε1 − ε2)/(ε1 + ε2) and ε1 and ε2 being the
dielectric functions inside and outside the particle, re-
spectively. The plus and minus sign correspond to the
situations where r′ lies outside or inside the particle. In-
serting Eq. (4) into the loss probability of Eq. (2), we
obtain for an electron trajectory that does not penetrate
the particle the final result

Γout
EELS(R0, ω) = − e2

π~v2ε2
(5)

×
∑
k

=m
(
λk + 2π

Λ + λk

) ∣∣∣∣∫ ∞
−∞

eiωz/vφk(r) dz

∣∣∣∣2 .
This expression, which has been previously derived in

[21], forms the starting point for our following analysis.
At a plasmon resonance, defined through <e[Λ(ω)+λk] =
0, the resonance term in Eq. (5) becomes large and its
contribution can dominate the total loss probability. Let
us assume for the moment that ωz/v � 1, such that the
EELS probability for the single, dominant mode reduces
to

Γout
EELS,θ(R0, ω) ∼

∣∣∣Rθ[φk(r)]
∣∣∣2 . (6)
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Here Rθ is the Radon transformation [24, 26] that per-
forms a line integration of φk(r) along the z-direction.
We have included in Eq. (6) an angle θ that accounts for a
possible rotation of the integration axis, as schematically
depicted in Fig. 1. A collection of Radon transformations
for a complete set of rotation angles is conveniently called
a sinogram [26]. The projection-slice theorem then states
that one can uniquely reconstruct the original function
from the sinogram. Eq. (6) differs from a normal sino-
gram in that ΓEELS depends on the square of the Radon
transforms, which leads to a sign ambiguity in the sino-
gram. In the following we first analyze a situation where
the sign ambiguity can be ignored, and we will discuss
the more general situation further below.

Results.—We first consider the setup depicted in Fig. 1,
where an electron beam is raster scanned over a single
nanorod and the EELS maps are recorded for different
loss energies ~ω and rotation angles θ. In panel (a) of
Fig. 2 we show the simulated EELS spectrum for the
electron beam positions shown in the inset. We use a di-
electric function for silver [27] and employ the MNPBEM
toolbox [28] for the solution of the full Maxwell equations
(without the quasistatic approximation). At low loss en-
ergies one observes two peaks which can be attributed
to the dipolar and quadrupolar plasmon modes. Owing
to the symmetry of the modes, an electron propagating
along z always passes through regions where φk(r) is ei-
ther solely positive or negative, which allows us to per-
form the inverse Radon transformation in Eq. (6). Re-
sults are reported in panels (d,e), showing almost per-
fect agreement between the reconstructed potentials and
φk(r), apart from the potential sign that cannot be re-
constructed from the EELS data. This is an encouraging
finding, considering that our EELS maps are obtained
from the solutions of the full Maxwell equations.

In Fig. 3 we show EELS maps for coupled nanoparti-
cles, which have received considerable interest in recent
years [14–17, 20], partially due to their importance for
surface enhanced Raman scattering (SERS) [29, 30]. In-
side the gap region the EELS signal becomes zero for the
bonding mode and maximal for the antibonding mode, as
discussed in detail in Ref. [20]. However, from the recon-
structed potential maps one observes a significant varia-
tion of the bonding potential along x, indicating a strong
electric field in the gap region, contrary to the antibond-
ing mode which has an only weak dependence along x.
Thus, although “being blind to hot spots” [20, 31] EELS
tomography even allows to reconstruct the complete field
distribution inside the gap region.

The situation becomes more complicated when the
electron passes through the metallic nanoparticle, and
the induced Green function in Eq. (4) has to be sepa-
rated into contributions where the electron is either in-
side or outside the metallic particle. Inside the metal
the electron becomes efficiently screened by free electrons
through the ε−1 term. To a good approximation, we can

ignore this contribution and approximate the EELS prob-
ability by

ΓEELS,θ(R0, ω) ∼
(
Rθ[φk(r)]

)(
Rθ[φout

k (r)]
)
, (7)

where φout
k (r) is the potential that is artificially set to

zero inside the particle. In Eq. (7) it is no longer pos-
sible to perform an inverse Radon transformation to re-
construct the plasmon potential, and we have to proceed
in a different manner. First, we introduce a cost function
that measures the distance between the computed EELS
probabilities and those computed from Eq. (7). Let f0

denote the EELS probabilities for all impact parame-
ters and rotation angles, and f [φk(r)] the corresponding
probabilities computed from Eq. (7). In a second step
we then determine, starting from some reasonable initial
guess, those potentials that minimize the cost function
J = 1

2 |f0 − f [φk(r)]|2 using a nonlinear conjugate gradi-
ent method [32]. In most cases the initial guess for the
potentials was not overly critical and the minimization
algorithm converged after a few iterations. Panels (b,c)
in Fig. 2 report the reconstructed potentials and φk(r)
for electrons penetrating through the metallic nanopar-
ticle, and we observe again very good agreement.

Having established a numerical optimization scheme
for the potential through minimization of the cost func-
tion, we can also rephrase the EELS tomography prob-
lem of Eqs. (5,6) in a way that appears better suited for
experimental implementation and that can be also em-
ployed for more complicated structures. To this end, we
first note that the source for the potential φk(r) is the
charge distribution σk(s) of the eigenmodes, and one can
reconstruct equally well the surface charge distribution
or the potential. We next rewrite Eq. (5) in the form

Γout
EELS,θ(R0, ω) =

∑
k

Ck(ω)

∣∣∣∣∫ φ∗R0,θ(s)σk(s) da

∣∣∣∣2 ,
(8)

where φR0,θ(s) = −(e/v)
∫∞
−∞G(s, re)e

iωze/v dze is the
potential of the electron propagating along re, with di-
rection θ and impact parameter R0, and the form of
Ck(ω) follows directly from the comparison with Eq. (5).
Equation (8) allows for the reconstruction of σk(s), which
can be approximated by boundary elements (as used in
our simulation approach [28]) or some freeform surface
functions such as non-uniform splines, provided that the
nanoparticle surface is known [26]. In what follows, we
again set ω/v ≈ 0.

Figure 4 shows for a number of particle shapes the
reconstruction based on Eq. (8). In all cases we used
for the initial guess a mode profile with proper sym-
metry, whereas other details turned out to be unim-
portant. Panel (a) reports σk(s) (left) and the recon-
structed surface charge distributions (right) for the dipo-
lar and quadrupolar nanorod modes, which are in very
good agreement. In panel (b) we show results for a disk-
shaped particles with two degenerate eigenmodes. For
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FIG. 4: (Color online) Surface charge distribution σk(s)
of eigenmodes (left) and surface charge distribution recon-
structed from the EELS maps (right), using Eq. (8), for (a)
nanorod, (b) nanodisk, and (c) bowtie geometry. Surface
charge distribution is given in arbitrary units. For the re-
construction of σk we consider EELS maps with a resolution
of 40×40 pixels, and use 45 rotation angles within θ ∈ [0, 90◦]
(similar results were obtained with only 10 rotation angles).

the reconstruction, we keep in Eq. (8) two modes with
identical coefficients Ck, and ensure that, because of sym-
metry, the charge distributions of these modes are identi-
cal but rotated by 90 degrees with respect to each other.
Again the optimization procedure comes up with the cor-
rect modes. We emphasize that a similar approach could
be used for modes that are energetically close to each
other, although in this case the coefficients Ck are dif-
ferent and the optimization should include EELS maps
for different loss energies. Finally, Fig. 4(c) shows the
bonding and antibonding mode distributions for a bowtie
geometry, demonstrating that our approach can be also
applied to more complicated structures.

In Fig. 5 we compare for the nanorod the true and
reconstructed potentials along the line (e) shown in the
inset of Fig. 2(a) [z = 0]. We observe that the quasistatic
potential and the potentials reconstructed from the EELS
maps, through either the Radon transformation [Eq. (6)]
or the surface charges of Eq. (8), are in good agreement,
demonstrating the quantitative measurement capability
of our approach. The comparison with the retarded po-
tentials is complicated by the fact that there exists no
clear eigenmode concept for the full Maxwell equations,
and we thus have to proceed in a different manner. In
the figure we show the modulus of the induced potentials
for a plane-wave excitation (we use an incidence angle of
45 degrees where both dipolar and quadrupolar modes
can be excited). Good agreement between the solutions
of the quasistatic and full Maxwell equations is found,
with only small deviations at larger positions, attributed
to the different excitation conditions and/or retardation
effects not included in the quasistatic solutions.

There are several reasons why Eq. (8) is advantageous
in comparison to Eq. (6). First, while σk(s) can typi-
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FIG. 5: (Color online) Eigenmode potential φk(r) (solid line)
and reconstructed potentials along the line (e) shown in the
inset of Fig. 2(a) [z = 0]. For the reconstruction we either use
the inverse Radon transformation of Eq. (6) [square symbols]
or the surface charge decomposition of Eq. (8) [triangles]. The
square modulus of the retarded scalar potential (scaled by an
arbitrary factor) is computed for a planewave excitation, as
described in text.

cally be represented by a few tens to hundreds of bound-
ary elements or parameters, the EELS maps for differ-
ent rotation angles provide a much larger data set, thus
making the optimization procedure for the reconstruc-
tion a highly overdetermined problem. The reason for
this overdetermination is the two-dimensional nature of
the surface charge distribution, whereas the potential,
which is uniquely determined by σk(s), can be measured
in the entire three-dimensional space. For the recon-
struction of σk(s) one can thus even discard trajecto-
ries where the electrons pass through the nanoparticle,
which are anyhow problematic in experiment because
of the electron attenuation within the metal. The in-
verse Radon transformation additionally requires a large
field of view, to properly include the far-reaching compo-
nents of the dipolar or multipolar surface plasmon fields,
in contrast to Eq. (8) that can be restricted to signifi-
cantly smaller regions. Consideration of finite wavenum-
bers ω/v naturally enters the framework of Eq. (8), in
the spirit of diffraction tomography [33], although in this
work we have neglected for simplicity such wavenumber
effects. Finally, effects of substrates or layers supporting
the nanoparticles can be included in our approach by re-
placing in Eq. (3) and in the definition of φR0,θ(s) the
Green function of an unbounded medium by that includ-
ing substrate or layer effects. The main limitations of our
tomography scheme are probably the quasistatic approx-
imation, which restricts the scheme to sufficiently small
particles, and the high degree of pre-knowledge needed
for the surface charge reconstruction (homogeneous di-
electric function of particle, surface charge distributions
as only source for plasmonic fields).
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