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Glassy polymers show “strain hardening”: at constant extensional load, their flow first accelerates,
then arrests. Recent experiments have found this to be accompanied by a striking and unexplained
dip in the segmental relaxation time. Here we explain such behavior by combining a minimal model
of flow-induced liquefaction of a glass with a description of the stress carried by strained polymers,
creating a non-factorable interplay between aging and strain-induced rejuvenation. Under constant
load, liquefaction of segmental motion permits strong flow that creates polymer-borne stress. This
slows the deformation enough for the segmental modes to re-vitrify, causing strain hardening.

PACS numbers: 64.70.pj,62.20.-x,83.80.Va

Understanding the flow of polymeric materials is cen-
tral to their manufacture and performance. After decades
of progress, the flow properties of molten polymers are
elegantly described by modern entanglement theories
[1, 2]. In use, however, most polymeric materials are not
molten, but rigid. This conversion is commonly achieved
by cooling to below the glass transition temperature, Tg.
In contrast to the molten case, satisfactory theories of
polymer glass rheology remain elusive.

Just below Tg, polymer glasses undergo slow plastic
deformation if stress is applied [3, 4]. Similar plasticity
is shown also by molecular, metallic, and colloidal glasses
[5–7]. Our understanding of flow in such non-polymeric
glasses has improved greatly due to recent advances in
microscopic [8, 9] and mesoscopic [10–12] theory. Crucial
to glass rheology is physical aging: a quiescent glass be-
comes more sluggish with time, rejuvenating under flow.
This is captured schematically in minimal ‘fluidity’ mod-
els, with a time evolution equation for a single structural
relaxation rate (the fluidity) [13, 14]. In the so-called
‘simple aging’ scenario, the structural relaxation time τ
(or inverse fluidity) of the system at rest increases lin-
early with its age [4, 10, 16]. A slow steady flow cuts off
this growth at the inverse flow rate.

In polymeric glasses, new properties emerge from the
interplay between polymeric and glassy degrees of free-
dom. Particularly striking is the evolution of the seg-
mental relaxation time τ(t), controlling the rate of local
rearrangements, when a load is applied. Recently, Lee
et al [3, 15] showed that τ(t) falls steadily during the
early stages of elongational deformation, and then more
sharply, reaching a small fraction ∼ 10−3.3 of its initial
level before dramatically rising again, as the local strain
rate started to drop on entering the ‘strain hardening’
regime. While elements of this scenario have been con-
firmed in coarse-grained and molecular simulations [17–
20], no convincing theoretical picture has yet emerged.

In [3], the results for τ(t) were found inconsistent with
the theory of Eyring [21] and with a more recent model
[11] (see also [22–24]) involving similar precepts. The
Eyring-like assumption of a purely stress-dependent flu-
idity, introduced for polymers in [25], is fundamentally
at odds with aging in glasses, whose fluidity is time-
dependent at constant stress [4, 10, 16]. Previous work
to incorporate aging and flow-rejuvenation into polymer
glass theory has led to the Eindhoven Glassy Polymer
model (EGP) [26], where viscosity is controlled by a state
parameter S that is age- and strain-dependent. However,
in the EGP model aging and rejuvenation have factorable
effects on S: strain-induced rejuvenation causes cumula-
tive losses of structure (reductions in S) which multi-
plicatively reduces all subsequent relaxation times. This
is not what theories of simple glasses predict [10, 13, 14].
The EGP’s precepts may thus be unsuited to the regime
of strong fluidization, as addressed experimentally in [3]
and in recent glass rheology theories [8–10, 13, 14].

Despite recent efforts [11, 22, 24, 27–29], creating a
complete theory of rheological aging in polymer glasses
remains a formidable task. Here we show that a minimal
model, combining just two key elements of any such the-
ory (nonfactorable aging/rejuvenation, and the strain de-
pendence of polymer-borne stresses), semiquantitatively
explains many of the results reported in [3].

Our model describes polymeric dumb-bells [2] sus-
pended in a glassy ‘solvent’, whose microscopic relaxation
time obeys a fluidity-type equation showing simple aging
and flow-rejuvenation. Despite our nomenclature, we do
not require any actual solvent to be present: the sepa-
ration between polymer and ‘solvent’ instead divides the
slow degrees of freedom of large sections of chain from
the shorter-scale and faster relaxing modes that control
local segmental dynamics. Our model thus follows lines
developed in [25, 26] but crucially differs in its treat-
ment of aging and rejuvenation. For simplicity we treat
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the dumb-bells initially as purely elastic elements – as is
valid in the molten state, where the elasticity is of en-
tropic origin [2]. However, we later return to discuss the
true nature of the polymer stress in polymeric glasses
which is not solely entropic in character [24, 28]. This
might seemingly call into question our time-scale separa-
tion into “polymeric” and “solvent” degrees of freedom;
however recent careful experiments [30] and modelling
[29] give clear evidence for such a separation.

Our model first defines a deviatoric stress tensor Σ =
Gp(σp − I) + Gs(σs − I) where σp and σs are dimen-
sionless conformation tensors for polymer and ‘solvent’,
Gp,s associated elastic moduli (see below), and I the unit
tensor. We then adopt the following equations for the
conformation tensors and solvent relaxation time τ :

σ̇p + v.∇σp = σp.∇v + (∇v)T .σp − α(σp − I)/τ(1)

σ̇s + v.∇σs = σs.∇v + (∇v)T .σs − (σs − I)/τ (2)

τ̇ + v.∇τ = 1− (τ − τ0)λ (3)

λ(D) ≡ µ
√

2Tr(D.D) (4)

Here v is the fluid velocity and D = (∇v + (∇v)T )/2.
Eq.(1) is the so-called “upper-convected Maxwell

model” or UCM. In simple shear at rate γ̇, its shear stress
Gpσp is governed by σ̇p = γ̇−ασp/τ , reducing to the fa-
miliar (linear) Maxwell model. The UCM is the simplest
extension of this to general flows that respects rotational
and other invariances [2]. Physically, the UCM describes
the dynamics of dumb-bells; these carry a stress Gpσp

and have a structural relaxation time τp = τ/α, propor-
tional to, but much larger than, that of the ‘solvent’, τ .
In the simplest models of dense, molten, but unentangled
polymers, α = N−2 with N the polymerization index [2],
whereas in a lightly crosslinked elastomeric network [3]
one expects α = 0. Consistent with its glassy nature, the
solvent itself is viewed as a viscoelastic fluid. Bearing in
mind that it represents shorter-scale polymeric degrees
of freedom, we model this fluid using another UCM (2).
Because there are more local than chain-scale degrees of
freedom, we expect Gs > Gp.

Finally, the solvent’s structural relaxation time τ obeys
a fluidity-type equation (3), with the following two fea-
tures. First, without flow, τ increases linearly in time
at a (dimensionless) solidification rate τ̇(D = 0) which
for simplicity we set to unity. This embodies the sim-
ple aging scenario that emerges from mesoscopic models
[10], whereby local configurations evolve into ever deeper
traps. Second, with flow present, τ would, in the absence
of such aging, itself undergo deformation-induced relax-
ation towards τ0 which is a ‘fully rejuvenated’ value. This
relaxation occurs at a rate λ, proportional to a scalar
measure of flow rate (with µ another dimensionless co-
efficient [2, 9]). In steady shear (λ = µγ̇), τ then varies
inversely with strain rate γ̇ in accord with microscopic
theory [8]. For uniaxial elongation at strain rate ε̇, (4)
reduces to λ = µ

√
3|ε̇|. Note that in this simple fluidity

model, the rejuvenation of τ is essentially strain-induced
[9] but, in contrast to the factorable model of [26], can
be rapidly reversed by subsequent aging.

Our model is completed by the standard equations of
mass and force balance for an incompressible fluid of neg-
ligible inertia: ∇.v = 0, and ∇.[Σ+2ηD] = 0. (We add a
small Newtonian viscosity η for purely numerical reasons
[31].) We have solved our model numerically for uni-
axial extension flows within a lubrication approximation
appropriate to long cylindrical samples. Our numerical
solutions address two cases [31]. One is an effectively in-
finite cylinder whose cross section remains spatially uni-
form, but is time dependent. The second addresses a
finite cylinder perturbed to trigger an inherent ‘necking’
instability (seen, in mild form, in [3]). We show next how-
ever that a semiquantitative account of the τ(t) response
under elongational load is already predicted by applying
our simple model to the infinite uniform cylinder.

In confronting the experimental data for τ(t) we first
set α negligibly small, appropriate for a crosslinked mate-
rial [3]. The experimental protocol of [3] determines the
applied tensile force F ; the initial relaxation time (tw in
our model) before applying the load; and the time tu at
which unload later occurs. There remain four material
parameters in the model: Gp, Gs, τ0 and µ. As detailed
in [31], three of these are strongly constrained by mea-
surements that do not involve the dip in the τ(t) curve.
Indeed, Gp/F can be deduced from the asymptotic defor-
mation in the strain-hardened regime just before unload;
once Gp is known (we find Gp = 6 MPa) Gs and µ are in
turn estimated from the step-change in τ during initial
loading, and from the separately measured slope [3] of the
‘effective flow curve’ ε̇(τ). Hence the only unconstrained
parameter in fitting the dip in τ(t) is τ0.

We find a good semiquantitative account of the strain
curve and τ(t) data, up to but not beyond the point of
unload, by choosing τ0 ' 6s. (Unloading is addressed
separately below.) Fig. 1 shows not only the local strain
and the segmental relaxation time τ(t), but also the ten-
sile stresses T p,s carried by polymer and solvent respec-
tively. Key features of the experimental data, reproduced
by our minimal model, include: (i) the initial drop in τ
on applying the load; (ii) its subsequent further decline
to a state of strong fluidization, with a sharp minimum
τmin near the point of maximum elongation rate; and (iii)
its rapid but decelerating rise from the minimum. Not
only the initial tenfold drop in τ on loading but also the
subsequent further sharp dip is quantitatively accounted
for. Figure 2 shows τ as a function of the elongational
stress, with breakdown of the Eyring-like expectation of
a monotonic, single-valued plot. Figure 3 shows (on log-
log) ε̇ against 1/τ ; this plot was found to collapse the
experimental data in [3] and a similar, if lesser, effect is
seen here. Considering the crudeness of our model (which
represents polymers and solvent by a single mode each),
this is remarkable agreement.
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FIG. 1: (Color online) Left Panels, solid curves: local strain
ε̃ = exp ε− 1 [3], reduced relaxation time τ(t)/tw and tensile
stresses T p,s = Gp,s(σp,s

zz −σp,s
xx ) of the polymer (p) and solvent

(s) during loading of an infinite uniform cylinder. Parameters
Gs/Gp = 8.5, µ = 12.5, tw/τ0 = 104, τ0 = 6s; applied force
/ initial area f = 2.7Gp. (The curve for T p, in red, initially
lies below T s but crosses it during strain hardening.) The
unload results for the basic model (θ = 1) is shown dashed;
the solid curve after unload has θ = 0.1. The horizontal axis
is marked both in dimensionless model units (top) and real
time (converted using τ0), bottom. Right Panels: Compara-
ble experimental data for local strain and reduced relaxation
time. (From [3]. Reprinted by permission of AAAS.)

If our model is correct, the physics of all these effects is
remarkably simple. The (pre-aged) ‘solvent’ glass has a
yield stress Σs

Y (in our model this obeys Σs
Y = Gsg(

√
3µ)

with g(y) ≡ 3y/(y−2)(y+1)) which is initially exceeded
by the applied load. After an initial step-down in τ
caused by step strain on loading, the material yields and
progressively fluidizes further; accordingly its strain rate
accelerates, giving positive feedback and a collapse in τ .
As deformation builds up, however, an ever growing share
of the applied stress is instead carried by the stretching
polymer chains. This causes the flow rate to drop, so that
the solvent, whose stress now obeys Σs < Σs

Y , starts to
solidify. This simple view of strain hardening also di-
rectly explains the remarkable behavior of τ(t).

Models that factorize aging and rejuvenation effects
[26] are seriously challenged by the rapid recovery of τ
after the dip. (A multimode spectrum [32] is unlikely to
help here.) With simple aging, such factorization predicts
τ ∼ (t+tw)f(ε), so that if the segmental relaxation times
falls from its pre-deformation value tw to a small value

FIG. 2: (Color online) Reduced relaxation time τ/tw
against actual stress in the infinite uniform cylinder. Pa-
rameter values Gs/Gp = 8.5, µ = 12.5, tw/τ0 =
104, τ0 = 6s for a scaled applied force per initial area
f/Gp = 0.3, 0.6, 0.9, 1.2, 1.5, 1.8, 2.1, 2.4, 2.5, 2.6, 2.65, 2.7 (in-
creasing left to right). The unload time obeys Tunload =
1500τ0. The horizontal axis is marked both in dimension-
less model units (top) and laboratory stress (bottom, as used
in the inset; converted factor Gp = 6 MPa). These curves
show qualitative agreement with the experimental data (from
[3]; reprinted by permission of AAAS) (inset).

τ = ftw = τmin at the dip, a tenfold recovery to τ ∼
10τmin does not occur until t ∼ 10tw ∼ 6 × 105s. This
prediction is 100 times too long [3].

We have also performed numerical calculations in the
case of a finite cylinder subject to a necking instability.
More details, and an additional figure, are provided in
[31]. Although our model is not predictive of sample
shapes (which depend on the details of the perturbation
used to initiate the neck), plots of τ(t), and sample radius
ρ(t), at three different initial positions along the sample
are in qualitative accord with the experiments of [3]. The
explanation given above for the temporal behavior of τ(t)
during elongation of an infinite uniform cylinder remains
equally valid for a finite, necked one.

To check that our model also behaves reasonably
in strain-controlled flows, we have calculated stress re-
sponses for startup of steady elongation/compression.
These show an overshoot (see [31]) whose height varies as
ln(ε̇tw), as seen in simple aging fluids [10], and in broad
accord with the polymer glass literature.

These successes are very encouraging. However, the
model as formulated so far breaks down badly when the
sample is unloaded. Here the experiments show a modest
drop in τ immediately on removing the load, followed by
a gradual recovery towards the pre-deformation value.
The dotted line in Fig. 1 shows the prediction based
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FIG. 3: (Color online) For the same runs as in Fig.2, during
loading phase only, log-log plot of reduced strain rate against
reduced relaxation rate. Inset: experimental data collapse
with this plot, slope 0.92. (From [3]. Reprinted by permission
of AAAS.) Partial collapse occurs here (dashed line is slope
1): while re-entrant regions do not fully superpose, the slopes
of the rising and decreasing curves remain comparable.

on Eqs. (1–4); τ drops, but then falls much further be-
fore recovering. The reason for this behavior within our
model is clear. In the strain-hardened regime, according
to Eq. 1, the polymers carry a large (and largely elas-
tic) tensile stress, which exceeds Σs

Y . Upon unloading,
this acts backwards on the vitrified solvent, causing it to
yield. The resulting τ(t) resembles a re-run of the ini-
tial loading experiment. Another discrepancy is that the
value of Gp ' 6 MPa needed to fit the loading data is ap-
proximately ten times larger than the rubbery modulus
of the same material above its glass transition (see, e.g.,
[33]). This confirms that the strain-hardened modulus
of polymer glasses does not primarily stem from single-
chain entropic elasticity [24, 28].

We now identify a physical mechanism that could ac-
count for both discrepancies. We invoke the well estab-
lished phenomenon of large but viscous stresses that arise
when chains are strained rapidly relative to their own
relaxation time (ε̇τp � 1). Under such conditions, rel-
atively small sections of polymer quickly approach full
extension locally, forming a nearly one-dimensional mul-
tiply folded (‘kinked’) filament [34, 35]. Further stretch-
ing occurs by migration and annihilation of neighboring
kinks of opposite sign. During this process, a large frac-
tion of the stress carried by the polymers is not entropic-
elastic, but instead caused by viscous drag against ex-
tended subsections of chain. Upon unloading, a large
fraction of this inelastic polymer stress disappears on
a very rapid timescale [34]. This mechanism is closely
related to ‘chain conformation hysteresis’ of stretched
chains, which causes a sudden loss of polymer stress on

unloading with only modest relaxation of polymer con-
formations [36]. It implies violations of the linear relation
between polymer stress and conformation assumed so far.

A full treatment of this rather complex effect would
entail replacing Eq.(1) with a more complex polymer
model such as the multimode description developed in
[34]. Rather than attempt this, we leave (1-4) intact but
suppose phenomenologically that the effective polymer
modulus drops by a certain factor, Gp → θGp, during
unloading of the sample. The solid line in Fig. 1 shows
the result for θ = 0.1. This choice of θ is consistent with
the fitted Gp being ten times larger than the value ex-
pected from entropic elasticity alone. The polymer stress
acting backwards on the solvent is now safely below the
solvent yield stress; the result is a modest drop and then
slow increase in τ(t), as seen experimentally.

Overall, the success of our simplified model suggests
that the striking time dependence of the segmental mobil-
ity under elongation, reported in [3], should be a robustly
universal feature of near-Tg polymer glasses. However the
quantitative details strongly depend on dimensionless pa-
rameters such as Gs/Gp, µ and θ. We cannot link these
directly to microscopic physics, but such parameters can
influenced by increasing polymer stiffness, adding small
molecules, or introducing short side chains. (All of these
should increase Gs/Gp, by raising the ratio of solvent-like
to polymeric degrees of freedom.) Our model may thus
suggest design strategies for manipulating the evolution
of τ(t), tailoring the mechanical responses of polymer
glasses to suit particular design needs.

In conclusion, we have presented a simple model for
polymer glasses that builds on concepts of rheological
aging and rejuvenation in simple glassy fluids. Without
attempting to capture every feature of the experiments of
[3] (for instance, we do not address the non-exponential
form of local relaxations), the minimal combination of a
simple-aging fluid with a strain-dependent polymer stress
can explain much of what happens when a polymer glass
is subjected to elongational load. The unloading behavior
is less easily explained, but consistent with a plausible
modification of the same model, which crudely allows
for the presence of non-elastic polymer stresses when ε̇τp

is large [34]. Although we do not address thermal or
memory effects in this letter, our model (with α = 0) does
predict that on heating to the stress-free liquid phase a
lightly crosslinked sample that was plastically deformed
as a glass will exactly recover its original shape [3].

Our work suggests that an accurate representation of
aging and rejuvenation physics will form a key part of
any more comprehensive theory of polymer glass rheol-
ogy. It encourages the view that a more comprehensive
account of polymer glasses might be achieved by judi-
ciously combining existing types of nonlinear rheologi-
cal theory (describing non-glassy polymers and simple
glasses respectively). Quantitative progress along these
lines might enable rapid advances towards the design of
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superior polymer glass materials.
Acknowledgements: MEC is funded by the Royal

Society. This work was funded in part by EPSRC
EP/E030173. RGL is partially supported from NSF un-
der grant DMR 0906587. Any opinions, findings, and
conclusions or recommendations expressed in this mate-
rial are those of the authors and do not necessarily reflect
the views of the National Science Foundation (NSF).



6

[1] T. C. B. McLeish, Adv. in Phys. 51 1379-1527 (2002).
[2] R. G. Larson, Constitutive Equations for Polymer Melts

and Solutions (Butterworth-Heinemann, Boston, 1988).
[3] H.-N. Lee, K. Paeng, S. F. Swallen, M. D. Ediger, Science

323, 231-234 (2009).
[4] L. C. E. Struik, Physical Aging in Amorphous Polymers

and Other Materials (Elsevier, New York, 1978).
[5] P. G. Debenedetti, F. H. Stillinger, Nature 410, 259-267

(2001).
[6] D. C. Hofmann et al, Nature 451, 1085-1089 (2008).
[7] P. Schall, D. A. Weitz, F. Spaepen, Science 318, 1895-

1899 (2007).
[8] J. M. Brader, M. E. Cates, M. Fuchs, Phys. Rev. Lett.

101, 138301 (2008).
[9] J. M. Brader, T. Voigtmann, M. Fuchs, R. Larson, M.

E. Cates, Proc. Nat. Acad. Sci. USA 106, 15186-15191
(2009).

[10] S. M. Fielding, P. Sollich, M. E. Cates, J. Rheol. 44 323-
369 (2000).

[11] K. Chen, K. S. Schweizer, EPL 79, 26006 (2007).
[12] M. L. Falk, J. S. Langer, Annu. Rev. Cond. Mat. Phys.

2, 353-373 (2010).
[13] C. Derec, A. Ajdari, F. Lequeux, Eur. Phys. J. E 4, 355-

361 (2001).
[14] P. Coussot, Q. D. Nguyen, H. T. Huynh, D. Bonn, Phys.

Rev. Lett. 88 175501 (2002).
[15] H.-N. Lee and M. D. Ediger, Macromolecules 43 5863-

5873 (2010).
[16] B. Rinn, P. Maass, J.-P. Bouchaud, Phys. Rev. Lett. 84,

5403-5406 (2000).
[17] R. A. Riggleman, H. N. Lee, M. D. Ediger, J. J. de Pablo,

Phys. Rev. Lett. 99, 215501 (2007).
[18] H. N. Lee, R. A. Riggleman, J. J. de Pablo, M. D. Ediger,

Macromolecules 42, 4328-4336 (2009).
[19] M. Warren, J. Rottler, Phys. Rev. E 76, 031802 (2007).
[20] M. Warren, J. Rottler, Phys. Rev. Lett. 104, 205501

(2010).
[21] H. Eyring, J. Chem. Phys 4, 283-291 (1936).

[22] K. Chen, K. S. Schweizer, Phys. Rev. Lett. 102, 038301
(2009);

[23] K. Chen, K. S. Schweizer, Phys. Rev. E 82, 041804
(2010).

[24] K. Chen, E. J. Saltzman, K. S. Schweizer, J. Phys. Cond.
Mat. 21 503101 (2009).

[25] R. N. Haward and G. Thackray, Proc. Roy. Soc. Lond.
Ser. A 302 453-372 (1968).

[26] E. T. J. Klompen, T. A. P. Engels, L. E. Govaert and H.
E. H. Meijer, Macromolecules 38 6997-7008 (2005).

[27] R. S. Hoy and C. S. O’Hern, Phys. Rev. E 82, 041803
(2010).

[28] R. S. Hoy, M. O. Robbins, Phys. Rev. Lett. 99 117801
(2007).

[29] K. Nayak et al., J. Polym. Sci. B. Polym. Phys. 49, 920-
938 (2011).

[30] P. J. Hine, A. Duckett, D. J. Read, Macromolecules 40,
2782-2790 (2007).

[31] The lubrication theory, numerical methods, parameter
estimations, and some additional results, are described
online at XXXX XXXX.

[32] L. C. A. van Breemen, E. T. J. Klompen, L. E. Gov-
aert and H. E. H. Meijer, J. Mech. Phys. Solids, in press

(2011).
[33] R. N. Haward, Macromolecules 26, 5860-5869 (1993).
[34] R. G. Larson, Rheol. Acta 29 371-384 (1990).
[35] E. J. Hinch, J. Non-Newtonian Fluid Mech. 54, 209-230

(1994).
[36] J. P. Rothstein, G. H. McKinley, J. Non-Newtonian Fluid

Mech. 108, 275-290 (2002).
[37] M. M. Denn, Ann. Rev. Fluid. Mech. 12, 365-387 (1980).
[38] M. A. Matovich, J. R. A. Pearson, I and EC Fundamen-

tals 8, 512 (1969).
[39] D. O. Olagunju, J. Non-Newtonian Fluid Mech. 87, 27-

46 (1999).
[40] W. H. Press et al., Numerical Recipes in C (Cambridge

University Press, Cambridge 1988).
[41] J. E. Mark, Ed., Physical Properties of Polymers Hand-

book 2nd Edition (Springer, NY, 2007).


