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In a quantum critical chain, the scaling regime of the energy and momentum of the ground state
and low lying excitations are described by conformal field theory (CFT). The same holds true for
the von Neumann and Rényi entropies of the ground state, which display a universal logarithmic
behaviour depending on the central charge. In this letter we generalize this result to those excited
states of the chain that correspond to primary fields in CFT. It is shown that the n-th Rényi entropy
is related to a 2n-point correlator of primary fields. We verify this statement for the critical XX

and XXZ chains. This result uncovers a new link between quantum information theory and CFT.

Entanglement is one of the central concepts in quan-
tum physics since Schroedinger used the term in an an-
swer to the Einstein-Podolsky-Rosen article in 1935. A
particularly active line of research is concerned with the
role played by entanglement in the physics of many-body
systems[1]. One is typically interested in the amount of
entanglement between two spatial partitions, say A and
B, of a many-body system in its ground state. For a
pure ground state the amount of entanglement is usu-
ally quantified with the entanglement entropy, or the
von Neumann entropy of the reduced density matrix ρA:
SA = −trA ρA ln ρA. Alternatively, the Rényi entropies
Sn are also used: (Sn)A = 1

1−n ln trA ρA
n, the entan-

glement entropy being limn→1 Sn. One of the most im-
portant results in this topic is the celebrated area law [2–
4], which, roughly speaking, states that ground states of
gapped many-body systems with short-range interactions
have an entanglement entropy proportional to the area
of the hypersurface separating both partitions. The area
law restricts the fraction of the Hilbert space accessible to
ground states of local Hamiltonians in an essential way,
allowing for their efficient numerical simulation [4].
Violations of the area law occur in gapless (critical)

systems. In one dimension most of critical systems, as
well as being gapless, are also conformal invariant. The
attention to the entanglement properties on these sys-
tems came after the seminal result of Holzhey, Larsen and
Wilczek [5], who showed that the leading behavior of the
ground state entropies Sgs

n is proportional to the central
charge of the underlying conformal field theory (CFT)
governing the long-distance physics of the discrete quan-
tum chain. If ℓ and N are the lengths of the partition A
and of the total system, both measured in lattice spacing
units, then the Rényi entropy of the ground state, with
periodic boundary conditions, is [5–7]

Sgs
n (ℓ) =

c (n+ 1)

6n
ln

[

N

π
sin

(

πℓ

N

)]

+ γn (1)

where c is the central charge of the CFT and γn is a non-
universal constant.
In a critical model, the finite-size scaling of the en-

ergy of excitations is given by the scaling dimension of
the corresponding conformal operators [8]. This fact sug-
gests that also the entanglement entropy could be related
to properties of these operators. Entanglement of excited
states has been considered previously. In [9] it was shown
that the negativity of the excited states in the XXZ criti-
cal model shows a universal scaling. In [10] it was shown
that a violation of area law should be expected for the
low lying excited states of critical quantum chains, and
in [11], it was considered the entanglement of very large
energy excitations in XY and XXZ spin chains.
In this letter we show that the entropy Sexc

n of excited
states associated to primary fields exhibits a universal
behaviour that generalizes (1). The energy of these low-
lying states degenerate as 1/N in the bulk limit N → ∞.
We prove that the excess of entanglement, Sexc

n − Sgs
n , is

a finite-size scaling function related to the 2n-point cor-
relator of the primary field. These results are verified in
two models: the XX and XXZ spin chains.
Entanglement of generic primary states. Let us

consider a system S of length N with periodic bound-
ary conditions. To describe it, we introduce the complex
variable ζ = σ + it, where 0 ≤ σ ≤ N is the spatial
coordinate and t is the time coordinate. S is split into
two subsystems S = A ∪ B, with A = (ǫ, ℓ − ǫ) and
B = (ℓ + ǫ,N − ǫ), and where ǫ << ℓ < N is a short-
distance cutoff [5]. The world sheet of the past (t < 0),
is a cylinder with two semidisks of radius ǫ cut out (de-
noted C and D in figure 1). The boundary of the world
sheet of figure 1 is given by the union A ∪ C ∪ B ∪ D.
After the conformal transformations ζ → w → z:

w = −
sin

(

π(ζ−ℓ)
N

)

sin
(

πζ
N

) , z = log w (2)

the ζ cylinder gets mapped into a strip of height π and
width d = 2 log

[

N
πǫ sin

(

πℓ
N

)]

; being A, B, C, D the
boundaries of the strip in z space (see figure 1). More-
over, the point at the infinite past ζ∞ = −i∞ gets
mapped into ζ∞ → z∞ = iπ (1− ℓ/N). We shall con-
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FIG. 1. Riemann surfaces describing the past events in ζ and
z. The distinguished point in z is the infinite past ζ∞ = −i∞.

sider the simplest excited states in a CFT, namely the
primary states, which are those generated acting on the
vacuum |0〉 with a primary field Υ(ζ, ζ̄), with conformal
weights (h, h̄),

|Υ〉 = lim
ζ,ζ̄→−i∞

Υ(ζ, ζ̄) |0〉. (3)

The wave function of this state |Υ〉 is given by the path
integral

ΨXY (Υ) ∝
∫

Dφ Υ[φ(z∞)] e−S(φ) (4)

where φ denotes the local field whose Euclidean action is
S(φ). The field Υ is a functional of φ, that is evaluated at
the infinite past z∞ in equation (4) (recall equation (3)).
X and Y denote the values of the field φ in the subsys-
tems A and B respectively. Periodic boundary conditions
are imposed on the C and D edges [5]. If Υ were not pri-
mary, then equation (4) would include additional terms
generated by the conformal transformations (2).
The density matrix ρ ≡ ρA of subsystem A is obtained

by tracing over the variables in B:

ρXX′(Υ) ∝
∫

DY ΨXY (Υ)Ψ∗
YX′(Υ). (5)

Plugging (4) into (5) one finds

ρXX′(Υ) =

∫

Dφ Υ[φ(z∞)] Υ∗[φ(z′∞)] e−S(φ)

Z(1)〈Υ(z∞)Υ†(z′∞)〉 (6)

where z′∞ = iπ(1 + ℓ/N) represents the point at the
infinite future. The functional integral is over a strip
of height 2π and width d, with boundary conditions
φ = X on the lower edge and φ = X ′ on the upper edge.
The normalization factor is determined by the condition
tr ρ = 1, which implies that Z(1) is the functional inte-
gral with no operator insertion and the top and bottom
edges of the strip being identified (i.e. a torus partition
function), and 〈ΥΥ†〉 is the two point correlator on this

torus. To compute the entanglement entropy one first
computes the trace of ρnΥ, which is given by

tr ρnΥ =
Z(n)

Z(1)n

∏n−1
k=0 〈Υ(z∞ + 2iπk)Υ†(z′∞ + 2iπk)〉τn

〈Υ(z∞)Υ†(z′∞)〉τ1
n

(7)

where Z(n) denotes the partition function on a torus of
lengths 2πn and d, so that the moduli parameter is given
by τn = 2πin/d, and where 〈. . .〉τn denotes the expec-
tation value in the τn-torus. Notice that the 2n-point
correlator of fields Υ, Υ† depends on the ratio ℓ/N and
on the moduli parameter.
To further proceed one uses the expression of the par-
tition function Z(n) of a general CFT with central
charge c for chiral and antichiral sectors of the theory,
Z(n) = Z(τ, τ̄ ) = tr qL0−

c
24 q̄L̄0−

c
24 , with the nome

q = q̄ = exp (2πiτ). In the limit d >> 1, it is convenient
to perform the modular transformation τ → −1/τ . The
partition function is modular invariant and can be easily
evaluated in terms of the nome q̃ = e−2πi/τ = e− d/n. In
particular, for the ground state (Υ0 = 1) one gets (up to
a model-dependent factor cn = e(1−n)γn):

tr ρnΥ0
=

Z(n)

Z(1)n
∼ e

c
12

( 1
n
−n) d =

[

N

πǫ
sin

(

πℓ

N

)]
c
6
( 1
n
−n)

(8)
as anticipated in (1). In the general case, equation (7)
depends on a 2n-point correlator of the fields Υ and Υ†

on a cylinder of length 2πn along the time direction. It is
now convenient to rescale this length to 2π. Afterwards,
we shift the coordinates zj → zj − iπ(1 − x)/n where
x = ℓ/N . Finally, we exchange σ and t coordinates in
such a way that zj = 2πj/n for Υ and zj = 2π(j + x)/n
for Υ†. The ratio between the excited and the ground

state traces, F
(n)
Υ (x) = tr ρnΥ/tr ρ

n
Υ0

, becomes, from (7):

F
(n)
Υ (x) ≡

n−2n(h+h̄)〈∏n−1
j=0 Υ(2πjn )Υ†(2π(j+x)

n )〉cy
〈Υ(0)Υ†(2πx)〉ncy

(9)

where 〈. . .〉cy denotes the expectation value in a cylinder

of length 2π. Note that F
(n)
Υ = exp

[

(1− n)(SΥ
n − Sgs

n )
]

.
The dependence of the entropies of the excited states
on the n-point correlation functions was also observed in
the ground state entropies of two disjoint segments of the
quantum critical chains [12]. The entanglement entropy
for the excited state |Υ〉 can then be computed using the
replica trick:

Sexc
1 = Sgs

1 − ∂F
(n)
Υ

∂n
|n=1. (10)
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In the limit x << 1, the terms ΥΥ† appearing in (9)
can be approximated by the operator product expansion
(OPE) Υ×Υ† = 1+Ψ+ . . . , finding:

F
(n)
Υ (x) ∼ 1 +

h+ h̄

3

(

1

n
− n

)

(πx)2 +O(x2∆Ψ) (11)

where Ψ is the operator with the smallest scaling di-
mension, ∆Ψ. The term of order x2∆Ψ depends on
the OPE constants CΨ

ΥΥ† and on the expectation val-

ues 〈Ψ(0)Ψ(2πjn )〉cyl. If ∆Ψ = 1, this term is O(x2) as
the first one in equation (11), and eventually they may
cancel one another, as we shall see in an example below.
If ∆Ψ 6= 1 one could use (11) to infer the quantities h+ h̄,
∆Ψ and CΨ

ΥΥ† from the numerical computation of the en-
tanglement.
Using equation (10) one finds, for the low-x behaviour

of the entanglement entropy (ℓ/N << 1):

SΥ
1 (ℓ)−Sgs

1 (ℓ) ∼ 2π2

3
(h+h̄)

(

ℓ

N

)2

+O

(

ℓ

N

)2∆Ψ

. (12)

Equations (9-12) are the main results of this letter.
They relate the von Neumann and n-Rényi entropy of the
excitation represented by the primary operator Υ to the
2n-point correlators of Υ and Υ† in the cylinder. Notice

that the ratio F
(n)
Υ does not depend on the non-universal

constant γn, which is therefore common to Sgs
n and Sexc

n .
As an example of the laws (9,10) we shall consider a

c = 1 CFT given by a massless boson compactified on a
circle. The primary fields are given by the vertex oper-
ators Υ1[n,m] = ei(α+φ+α−φ̄) (being φ,φ̄ chiral and an-
tichiral boson fields) where α± = n/2

√
κ±m

√
κ, κ is the

compactification ratio, and n,m ∈ Z. The scaling dimen-
sions of these operators are (α2

++α2
−)/2 = n2/4κ+m2κ.

Using the chiral correlator of vertex operators on the
cylinder, 〈

∏

j e
iαjφ(zj)〉cy =

∏

j>k [2 sin(zjk/2)]
−αjαk , it

turns out that

F
(n)
Υ1[j,k]

(x) = 1, ∀x, j, k. (13)

Hence, all the excitations represented by vertex operators
have the same entropy as the ground state. This result
is not in contradiction with (11) because, in this case,
∆Ψ = ∆∂φ = 1 and both O(x2) terms in (11) cancel out
due to the properties of the OPE constants. In fact, the
cancellation happens in all order of x.
Next, we study the operator Υ2 = i∂φ. Us-

ing its correlator on the cylinder 〈∂φ(z1)∂φ(z2)〉cy =

− [2 sin(z12/2)]
−2

and the Wick theorem, we get (in terms
of s(x) ≡ sin(πx/2)):

F
(2)
Υ2

(x) = 1− 2s2(x) + 3s4(x) − 2s6(x) + s8(x) (14)

and a more lengthy expression for F
(n>2)
Υ2

. In the low-ℓ/N

limit, one finds that F
(n)
Υ2

(x) ∼ 1 + (πx)2 (1/n− n) /3,
which leads to an excess of entanglement entropy given
by (12) with (h, h̄) = (1, 0).
Realizations of both types of excitations in particular

models will be now shown, and their amount of entan-
glement compared with the CFT predictions (13,14).
Excitations in the XX and XXZ models. The
Hamiltonian of the spin-1/2 XXZ model is given by

Hxxz = −1

2

N
∑

j=1

(

σx
j σ

x
j+1 + σy

j σ
y
j+1 +∆σz

j σ
z
j+1

)

, (15)

where N is even and periodic boundary conditions are
assumed (for ∆ = 0 we get the XX model). This model
is integrable [15] and gapless for −1 ≤ ∆ < 1. The cor-
responding CFT is given by the aforementioned bosonic

CFT with κ = π
2

[

π − cos−1(−∆)
]−1

. The XX model
in the sector with magnetization M = 1

2

∑

j σ
z
l can be

mapped, through a Jordan-Wigner transformation, into
a system with nF = M + N/2 free fermions in a lattice
of N sites. We computed the entanglement and Rényi
entropies of several types of excitations in these models.
This task was achieved using the methods of references
[7, 13] in the free fermion problem and through numerical
exact diagonalization in the XXZ case.
Let us first consider the vertex operator Υ1[0,m].

In the free fermion model, the result (13) is ex-
act and can be proved analytically. Indeed,
|Υ1[0,m]〉 corresponds to the umklapp excitation
∏m

j=1 d
†

kF+(2j−1)π/Nd−kF+(2j−1)π/N |0〉, where kF =

πnF /N is the Fermi momentum, and where |0〉 is the

Fermi state and d†k the fermionic creation operator with
momentum k. This state can be obtained from the Fermi
state shifting all the momenta as k → k+2mπ/N . Such
a shift produces a global phase factor in the wavefunc-
tion in real space and, consequently, the entropy remains
unchanged. In the XXZ model, the state |Υ1[0, 1]〉 cor-
responds to the ground state in the sector with nF spins
up and total momentum P = 2πnF /N . We observe that

the prediction F
(n)
Υ1

(x) = 1 holds, up to the oscillations
expected for n ≥ 2 [14], which in this case are of the or-
der of 10−3 for systems with N = 30 spins.
We will now consider the excitation Υ1[2, 1]. In a system
of free fermions the resulting state corresponds to the ad-
dition of two fermions at the right of the Fermi point, i.e.,
to the state d†kF+π/Nd†kF+3π/N |0〉. Figure 2 shows that

ground and excited states entropies S2,3 coincide, up to
oscillations. In the XXZ model, |Υ1[2, 1]〉 is the low-
est eigenstate with total momentum P = 2π(nF +2)/N .

Again in this case, oscillations of F
(2)
Υ1[2,1]

around one are

observed (see figure 2).
Finally, figure 3 shows some numerical results for the

entanglement of the excitation Υ2 = i∂φ. In the free
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(1) (continuous lines), up to oscillations [14].
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FIG. 3. The quantity F
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fractions and for the XXZ (∆ = −1/2, N = 30, nF = 14) model,

vs. the CFT prediction (14). For nF = 250 the oscillations around

(14) are so small that both curves are indistinguishable. In the

inset we show S2 for the ground and excited states (nF = 250,

N = 500). The upper inset is a zoom of the region selected by the

small rectangle over the curve in the main figure.

fermion problem, |Υ2〉 corresponds to a particle-hole ex-

citation: d†kF+π/NdkF−π/N |0〉, while in the XXZ model

it corresponds to the lowest eigenstate with P = 2π/N .
We observe an excellent agreement with the theoretical
prediction (14) for n = 2. Similar results hold for n = 3.
Moreover, we have checked, for n up to 6, that the low-
ℓ/N formula (12) is very well satisfied for fermions.
In summary, we have obtained an expression for the

Rényi entropies of excitations associated to any primary
field. We verified the results with finite-size realizations
of the XX and XXZ models up to 30 sites in the latter
case, finding very good agreement with the theory.

As explained earlier, equation (9) can be used as a nu-
merical method to extract information about correlators,
conformal dimensions and OPE coefficients of primary
fields. An interesting problem is to generalize these re-
sults to the descendent states in CFT. We expect that the
Rényi entropies, at a given level of a conformal tower will
depend on the particular state targeted. This can pro-
vide a method to establish the correspondence between
degenerated excited states of a critical lattice model, and
the descendent fields in the underlying CFT.
Equation (9) further suggests a generalization of the

Rényi entropies in terms of traces of different density
matrices tr [ρΥ1

ρΥ2
. . .]. This object would be related to

the correlator: 〈Υ1Υ
†
1Υ2Υ

†
2 . . .〉 in the very same fashion

as in (9). The numerical computation of the associated
generalized entropies would then provide information on
more general correlators in CFT, and vice-versa. Ap-
plications of the present work to other models and to
non-primary fields are in progress.
This work represents a further step along the direction

of deriving CFT data using quantum information meth-
ods.
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