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Resonant scattering by realistic impurities in graphene
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We develop a first-principles theory of resonant impurities in graphene and show that a broad range
of typical realistic impurities leads to the characteristic sublinear dependence of the conductivity
on the carrier concentration. By means of density functional calculations various organic groups as
well as ad-atoms like H absorbed to graphene are shown to create midgap states within ±0.03 eV
around the neutrality point. A low energy tight-binding (TB) description is mapped out. Boltzmann
transport theory as well as a numerically exact Kubo formula approach yield the conductivity of
graphene contaminated with these realistic impurities in accordance with recent experiments.

The mechanism determining the charge carrier mobil-
ity of present graphene samples is being controversially
debated. The main experimental fact requiring an ex-
planation is that, away from the neutrality point, the
conductivity of graphene is weakly temperature depen-
dent and approximately proportional to the carrier con-
centration ne [1, 2]. This definitely requires the assump-
tion of some long-range interactions with scattering cen-
ters. The Coulomb interaction with charge impurities
is an “explanation by default” [3]. However, it seems
that some experimental data cannot be explained in this
way, especially, a relatively weak sensitivity of the elec-
tron mobility to dielectric screening [4]. Thus, alternative
scattering mechanisms are also discussed, such as frozen
ripples [5] and resonant scatterers [5–8]. In the first case
the long-range character of the interactions is due to the
long-range character of elastic deformations and in the
second one due to divergence of the scattering length.
New experimental data [9] seem to support the latter
possibility.

Theoretically, both suggestions face with serious prob-
lems. The “ripple” mechanism requires quenching of the
thermal bending fluctuations [5, 10], but there are still
no realistic scenarios of such a quenching. Resonant scat-
tering naturally appears for vacancies [8] but they do not
exist, in noticeable concentrations, in graphene samples
if they are not created artificially, e.g., by irradiation [11].
Adsorbates on graphene can provide resonances (quasilo-
calized states) close enough to the neutrality point [12–
15] but not necessarily [12, 16]. For impurity resonances
some 100meV off the neutrality point the conductiv-
ity should display a pronounced electron-hole asymmetry
[16] which is not observed in experiments. So, it is not
clear whether resonant impurity scattering can be the
main limiting factor in a general case.

In this Letter, we build a first-principles theory of elec-
tron scattering by realistic resonant impurities, such as
various organic molecules which are always present in ex-
foliated graphene samples [17, 18]. Combining the Boltz-
mann equation approach and a numerically exact Kubo

formula consideration with first-principles parameters,
we show that this class of impurities can limit electron
transport in typical exfoliated graphene samples and ex-
plain the experimentally observed concentration depen-
dence of the conductivity.

Exfoliated graphene samples are contaminated with
long polymer chains [17, 18]. Most important about
these contaminants is their possibility to form a chem-
ical bond to carbon atoms from the graphene sheet. To
model such a situation we carry out density functional
theory (DFT) calculations of graphene with adsorbed
CH3, C2H5, CH2OH (as simplest examples of different
organic groups), as well as H and OH groups. From the
resulting supercell band structures we derive effective in-
teraction parameters entering a TB model and find that
the exact chemical composition is not essential: the pa-
rameters are very similar for all adsorbates except for the
case of hydroxyl. This facilitates us to obtain the effect
of the contamination on the electron conductivity.

An atomistic description of the graphene adsorbate
systems is achieved by DFT calculations within the gen-
eralized gradient approximation (GGA) [19] on 3×3-9×9
graphene supercells containing one impurity. Using the
Vienna Ab Initio Simulation Package (VASP) [20] with
the projector augmented wave (PAW) [21, 22] basis sets,
we obtain fully relaxed adsorption geometries and calcu-
late the supercell band structures.

The DFT results for CH3, C2H5, CH2OH on graphene
are shown in Fig. 1a and compared to H and OH adsor-
bates. All of these impurities bind covalently to graphene
and create a midgap state as characteristic for monova-
lent impurities [15]. For all adsorbates except OH the
midgap state lies within ±0.03 eV around the neutrality
point. As the supercell band structures for the organic
groups and for H on graphene virtually coincide within an
energy range of more than ±1 eV, it becomes clear that
the parameters of the midgap state depend very weakly
on the adsorbed group and, thus, can be considered as
robust for further use in the transport theory.

For an analytical description of these systems we start
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Figure 1: (Color online) (a) Band structures
of 4 × 4 graphene supercells with CH3, C2H5,
CH2OH, H and OH adsorbates and the respective
adsorption geometries of the CH3, C2H5, CH2OH
(c-e) groups. (b) Comparison of the supercell
band structure of graphene with CH3 as obtained
from DFT to the TB models with V = 2t and on-
site energies ǫd = −0.16 eV and ǫd = −0.65 eV.

with a TB model of graphene,

Ĥ = −t
∑

<i,j>

c†i cj , (1)

where ci denotes the Fermi operator of an electron in the
carbon pz orbital at site i, the sum includes all pairs
of nearest-neighbor carbon atoms, and t ≈ 2.6 eV is
the nearest-neighbor hopping parameter. In this frame-
work, we consider a “non-interacting Anderson impu-
rity”, adding to the (1) the localized state, Ĥimp = ǫdd

†d,
with on-site energy ǫd and corresponding Fermi opera-
tor d, which is coupled to the graphene bands by V̂ =
V c†0d+H.c..
To describe electron transport in pristine as well as

doped graphene correctly, the analytical model has to
recover the realistic system within an energy window of
some 100meV around the neutrality point. Applying the
same supercell boundary conditions as in the DFT sim-
ulations to the TB impurity model, we obtain the TB
supercell band structures as depicted in Fig. 1 b. The
band structure of graphene with a methyl group is well
fitted with V ≈ 2t = 5.2 eV and ǫd ≈ −t/16 = −0.16 eV.
For the DFT band structures of all other neutral func-

tional groups we find a good fit of TB with |V | >∼ 2t
and |ǫd| <∼ 0.1t ≈ 0.26 eV. The hybridization strength V
being a factor 2 larger than t is in accordance with the
hybridization for hydrogen ad-atoms from Ref. [16] and
appears very reasonable, as the impurity forms a σ-bond
with the host atom underneath [34]. The on-site energies
|ǫd| obtained here are significantly smaller than the value
ǫd = 1.7 eV used for H in Ref. [16] which will make our
results for the transport properties qualitatively differ-
ent. We note that the model parameters extracted here
are converged w.r.t. the supercell size.
The scattering of electrons caused by resonant im-

purities is described by the T -matrix (for a review,

see Ref. 14) T (E) = V 2

E−ǫd−V 2g0(E) , where g0(E) ≈
E
D2 ln

∣

∣

∣

E2

D2−E2

∣

∣

∣
− iπN0(E), with N0(E) = |E|

D2 ·Θ(D−|E|)
and D =

√√
3πt ≈ 6 eV, is the local Green function of

pristine graphene. Correspondingly, N0(E) is the density
of states (DOS) per spin and per carbon atom. The T -

matrix exhibits a resonance at E
(

1− V 2

D2 ln
∣

∣

∣

E2

D2−E2

∣

∣

∣

)

−

ǫd = 0 which is the energy of the midgap state. The
impurity model parameters obtained from DFT lead to
resonances in an energy region of ±0.03 eV around the
Dirac point, which proves consistency of our TB model
with DFT.
In the Boltzmann equation approach, the T -matrix

can be used to estimate the conductivity σ: σ =
(2e2/h)vF kF τ , where vF is the Fermi velocity and kF
is the Fermi wave vector. For a concentration of ni im-
purities per carbon atom, the scattering rate reads as
[16, 23, 24] τ−1 = (2π/h̄)ni|T (EF )|2N0(EF ) and yields
the conductivity

σ ≈ (2e2/h)(2πni|T (EF )/D|2)−1. (2)

In the limit of resonant impurities with V → ∞, we

obtain T → −1/g0(E) ≈ −
[

2E
D2 ln

∣

∣

E
D

∣

∣

]−1
for E ≪ D.

Hence, the conductivity reads in this limit as

σ ≈ (2e2/h)
2

π

ne

ni

ln2
∣

∣

∣

∣

EF

D

∣

∣

∣

∣

, (3)

where ne = E2
F /D

2 is the number of charge carriers per
carbon atom. Eq. (3) yields the same behavior as for
vacancies [8]. In the case of the resonance shifted with
respect to the neutrality point the consideration of Ref.
[7] leads to the dependence

σ ∝ (q0 ± kF ln kFR)
2
, (4)

where ± corresponds to electron and hole doping, respec-
tively, and R is the effective impurity radius.
We now investigate to which extend realistic resonant

impurities create sublinear behavior similar to Eqs. (3-4).
To this end, we first estimate the conductivity according
to Eq. (2) for different types of impurities (Fig. 2). For
the resonant scatterers from Fig. 1 (except for OH) the
conductivity curves are expected to lie within the region
bounded by the curves belonging to ǫd = −0.26 eV and
ǫd = 0.26 eV. These curves are very similar to V-shape
experimental curves [1, 2, 4, 9] and can be roughly fitted
to the limit of Eqs. (3) and (4). The effective radius R
resulting from Eq. (3) is R = D/h̄vF ≈ 0.9Å and has
been also used in the fit according to Eq. (4) in Fig. 2.
Experimentally, sublinear behavior similar to Eqs. (3-4)
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Figure 2: (Color online) Conductivity σ in the Boltzmann
approach as function of charge carrier concentration ne (in
units of electrons per atom) for different impurities: Impuri-
ties with hybridization V = 2t = 5.2 eV and on-site energies
ǫd = −0.26, 0.26, and 1.7 eV in concentration ni = 0.1%.
(Curves are labelled by the corresponding ǫd.) Fits to the
V → ∞ limit of Eq. (3) with ni = 0.06% (dashed) as well as
Eq. (4) with q0 = 0.02 Å−1 (dash dotted) are shown. (Here,
ne = E2

F /D
2 corresponds to the clean graphene DOS.)

has been observed [9, 11] with effective impurity radii in
the range of R = 2.3 − 2.9Å. However, any estimation
of effective radii should be considered only qualitatively,
as D and R enter the conductivity logarithmically and a
wide range of cut-offs lead to similar conductivity curves.
The result for impurities with V = 2t and ǫd = 1.7 eV,

which corresponds to H ad-atoms in the model of Ref.
[16], differs qualitatively from our results and from ex-
perimental data which emphasizes the crucial importance
of a careful first-principles determination of the model
parameters. In our model and for the charge carrier
concentration being varied within |ne| < 0.003/C-atom=
1.1 ·1013 cm−2, impurities like CH3, C2H5, CH2OH, or H
attached to graphene lead to a Boltzmann conductivity
with one distinct minimum close to the neutrality point.
At low charge carrier concentrations or high impu-

rity concentrations, the Boltzmann approach becomes
questionable. To understand the on-set of this param-
eter regime and the behavior of the conductivity in this
regime, we performed numerically exact calculations of
the conductivity in the TB model (1) using the Kubo
formula. [See [25].] The results for two types of resonant
scatterers, adsorbed atoms with ǫd = −t/16, V = 2t re-
sembling CH3 groups, and for vacancies are shown in Fig.
3. One can see that the Boltzmann equation is applicable
only for impurity concentrations smaller than a few per-
cent per site (already for 5% the difference in concentra-
tion dependence is essential). The Boltzmann approach
does not work near the neutrality point where quantum
corrections are dominant [6, 26, 27]. In the range of con-
centrations, where the Boltzmann approach is applicable
the conductivity as a function of energy fits very well the
dependence of Eq. (4), with q0 = 0.02Å−1, R = 0.6Å for
ni = 0.1%, and q0 = 0, R = 0.5Å for nx = 0.1% with
kF = EF /(h̄vF ) as in clean graphene.
Close to the neutrality point the conductivity deviates

from the Boltzmann equation result of Eq. (2). Boltz-
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Figure 3: (Color online) Conductivity σ as a function of
charge carrier concentration ne (in units of electrons per
atom) for different resonant impurity (εd = −t/16, V = 2t) or
vacancy concentrations (nx) : (a) ni = nx = 0.1%, (b) 0.2%,
(c) 1%, (d) 5%. Periodic boundary conditions are used with a
sample containing (a) 8192× 8192 and (b-d) 4096× 4096 car-
bon atoms. The carrier concentrations ne are obtained from
the integral of the corresponding DOS depicted in Fig. (4).

-3 -2 -1 0 1 2 3
0.00

0.25

0.50

0.75

1.00

1.25

-3 -2 -1 0 1 2 3
0.00

0.25

0.50

0.75

1.00

1.25

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
0.0

0.1

0.2

0.3

0.4

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
0.0

0.1

0.2

0.3

0.4

D
O
S

(b)

(a) (c)

(d) ni=0%
 ni=0.1%
 ni=0.2%
 ni=1%
 ni=5%D

O
S

E(t)

 n
x
=0%

 n
x
=0.1%

 n
x
=0.2%

 n
x
=1%

 nx=5%

E(t)

Figure 4: (Color online) Density of states as a function of
energy E for different resonant impurity (εd = −t/16, V = 2t)
or vacancy concentrations: ni(nx) = 0.1%, 0.2%, 1%, 5%.

mann theory is not capable of yielding σ = 4e2/πh for
clean graphene at the neutrality point [6, 26]. More-
over, resonant impurities lead to the formation of a low
energy impurity band (see increased DOS at low ener-
gies in Fig. 4). At impurity concentrations on the order
of a few percent (Fig. 3 c,d) this impurity band con-
tributes to the conductivity and can lead to a maximum
of σ in the midgap region. Moreover, the impurity band
can host two electrons per impurity. For impurity con-
centrations below ∼ 5%, this leads to a plateau shaped
minimum of width 2ni (or 2nx) in the conductivity vs.
ne curves around the neutrality point. Analyzing the
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plateau width in experimental data (similar to the anal-
ysis for N2O4 acceptor states in Ref. 13) can, thus, yield
an independent estimate of impurity concentrations. For
chiral disorder [28, 29] corresponding to the resonant im-
purities considered, here, as well as short range disorder
[30, 31] (anti)localization effects can become important
in cases like graphane, where impurity concentrations are
varied between a few percent and 100%. In clean mi-
cron size samples with realistic impurity concentrations
on the order of ni = 0.01%− 0.1% these effects present
merely corrections: Upon doubling the simulation cell
length (4096 × 4096 → 8192 × 8192) at ni = 0.1% the
changes of the conductivity at the neutrality point are
below 10%.
Electron scattering in bilayer graphene has been

proven to differ essentially from the single layer case in
Ref. 32: For a scattering potential with radius much
smaller than the de Broglie wavelength of electrons, the
phase shift of s-wave scattering δ0 tends to a constant as
k → 0. Therefore, within the limit of applicability of the
Boltzmann equation, the conductivity of a bilayer should
be just linear in ne, instead of sublinear dependence (4)
for the single layer. The difference is that in the single
layer, due to vanishing DOS at the Dirac point, the scat-
tering disappears at small wave vectors as δ0(k) ∝ 1

lnkR

(with ln2 kR on the order of 10 for typical amounts of
doping) for resonant and as δ0(k) ∝ kR for the nonres-
onant impurities. Contrary, in the bilayer there are no
restrictions on the strength of the scattering and even
the unitary limit (δ0 = π/2) can be reached at k = 0. As
follows from Ref. 32, a cylindric potential well of radius

R, leads to δ0 = π/2 if d
dR

J0(qR)
I0(qR) = 0, where q is the wave

vector inside the well, J0 and I0 are the Bessel functions
of real and imaginary arguments, respectively. Thus, an
assumption that resonant scattering is the main limiting
factor for electron mobility in exfoliated graphene leads
to the prediction that the dependence of σ(ne) should
be essentially different for the cases of bilayer and sin-
gle layer, that is, linear and sublinear, respectively. This
agrees with the experimental results [33].
In summary, we have demonstrated that realistic im-

purities in graphene frequently cause quasilocal peaks
nearby the neutrality point. In particular, for various
organic groups the formation of a carbon-carbon bond
results in the appearance of midgap (resonant) states
within ±0.03 eV around the neutrality point. They can
be described as Anderson impurities with the hybridiza-
tion parameter of about 2t and on-site energies on the
order of |ǫd| < t/10. The resonant scattering model
with these parameters describes satisfactory experimen-
tal data on the concentration dependence of charge car-
rier mobility for graphene.
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