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We analyze a model that accounts for the inherently large thermal lattice fluctuations associated
to the weak van der Waals inter-molecular bonding in crystalline organic semiconductors. In these
materials the charge mobility generally exhibits a “metallic-like” power-law behavior, with no sign
of thermally activated hopping characteristic of carrier self-localization, despite apparent mean-free-
paths comparable or lower than the inter-molecular spacing. Our results show that such puzzling
transport regime can be understood from the simultaneous presence of band carriers and incoherent
states that are dynamically localized by the thermal lattice disorder.

PACS numbers:

In the past years, the development of crystal grow-
ing techniques has led to the production of molecular
organic semiconductors with extremely low structural
disorder, attaining an upper intrinsic limit of the car-
rier mobility p ~ 10! — 10%2cm?/V's, whose explanation
still challenges the scientific community. ﬂ] Surprisingly,
despite decades of active investigation there is still no
well-established theory of charge transport in these ma-
terials. Attempts to generalize the usual concepts that
successfully apply to inorganic semiconductors have re-
vealed unsatisfactory, failing to provide a complete un-
derstanding of the fundamental mechanisms governing
the charge mobility. In this respect, there has been
historically a duality between a conventional band-like
descriptionﬂj, ] relying on the existence of well defined
“Bloch” states and the opposite view of self-localized (po-
laronic) carriers hopping incoherently from molecule to
molecule,@, B, , B] but no conclusive agreement has been
reached if either of these limiting descriptions applies in
practice. In fact, the most puzzling feature of charge
transport in crystalline organic semiconductors is that
they generally exhibit a “band-like” mobility character-
ized by a power-law decrease with temperature,ﬂ, ] but
with absolute values close to or even below the Mott-
Toffe-Regel limit around room temperature, i.e. with
apparent mean-free-paths that are comparable or even
lower than the inter-molecular spacing.ﬂg] This observa-
tion clearly suggests a breakdown of conventional band
behavior and has been often taken as an indication of po-
laronic carrier localization, even though the absence of a
distinctive thermally activated mobility is at odds with
this interpretation. Recently, an alternative mechanism
has been suggested where the electronic wavefunction is
localized by the large thermal lattice ﬂuctuationsm, H]
rather than by polaronic self-trapping effects, a picture
that is indeed compatible with the observed mobilities,
du/dT < 0. However, new experimental evidence on the
existence of band-like carriers has gathered from different

techniques such as transient photoconductivit ,ﬂﬂ, |E]
optical absorption [14,[15] and photoemission ﬂﬁ], which
has once more reopened the debate.

In this Letter, we revisit the traditional duality of
band-like wvs.  localized carriers in highly conduct-
ing crystalline organic semiconductors, where electron-
lattice interactions are too weak to induce polaronic self-
localization. In these systems the limiting paradigm of
thermally activated hopping is replaced by a different
high temperature regime where the carriers diffuse inco-
herently in the presence of large thermal lattice fluctu-
ations, giving rise to a weakly metallic behavior which
is analogous to the “resistivity saturation” characteris-
tic of bad metals. ﬂﬂ, ] In the experimentally ac-
cessible temperature range, our results show that both
band-like features characteristic of Bloch electrons and
incoherent states of a more localized nature are simul-
taneously present in the single-particle excitation spec-
trum, albeit at different energy scales. Accordingly, dif-
ferent experimental probes will see alternatively one fea-
ture or the other, which is likely at the origin of the long-
standing controversy on the microscopic identity of the
charge carriers in these materials. Because of this dual-
ity, the charge dynamics cannot be understood in terms
of a single microscopic mechanism, since band-like carri-
ers as well as incoherent excitations of a more localized
nature both contribute to the electrical mobility.

In organic semiconductors the molecules are bound
together by weak van der Waals forces. These are at
the origin of the most salient characteristics of these
materials, that are held responsible for their peculiar
electronic properties: the presence of extremely narrow
electronic bandwidths, comparable to the thermal en-
ergy at room temperature, and their mechanical soft-
ness, reflected in large fluctuations of the molecular lat-
tice around its equilibrium structure. The thermal lat-
tice vibrations give rise to a large (dynamic) disorder
in the inter-molecular transfer integrals ¢ which is cur-
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rently identified as the dominant intrinsic limiting factor
of the mobility in these compounds. ﬂa, [E, IE, @, |2Tl]]
Other microscopic mechanisms, such as the reorganiza-
tion of electronic states within the molecules (the intra-
molecular electron-phonon interaction), have been shown
to have a weaker effect on charge transport,m, @] es-
pecially in crystals of large molecules such as pentacene
and rubrene where the highest mobilities are currently
achieved @, ] The above features can be formalized
in the following model Hamiltonian@, E, E, , ]

H = —t Z F(Xi — Xits) (C;_CiJr(S + c;-:_l;ci)
Mw¢ ,
X; 1
where ¢ (c;) are creation (annihilation) operators for an

electron on a given molecule and the function f measures
the variation of the transfer integrals between neighbor-
ing molecules (at sites ¢ and i40) due to their relative dis-
placements, X; — X;1s. In the following we shall assume
for clarity a linear dependence f(x) = 1 — au, although
our method can be easily generalized to other forms of
f(=). [21)

To solve the model Eq. () we treat the X; as clas-
sical variables, assuming that the lattice dynamics are
slower than any other time-scale in the system. This
is justified in virtue of the extremely low frequencies of
the inter-molecular phonons that couple to the electronic
motion, smaller than both the thermal and the band en-
ergy Scal@hwo ~4—-9meV,t ~ 130meV in rubrene@],
see [10, 19, [24] for different compounds). In this case
the electronic properties depend on a single dimension-
less coupling parameter A\ = o?t/(2Mw3). We evalu-
ate the non-local electron Green’s function G(, j,w, X)
(i,7 = lattice sites) for a statistical set of lattice configu-
rations X = {X;} corresponding to a random extraction
of the molecular displacements X; out of a gaussian dis-
tribution P(X;) o< exp(—Mw2X?/2kgT). The electronic
problem at each given X is solved numerically using an
algorithm based on regularization of recursion formulas
ﬂﬁ] as an alternative to common exact diagonalization
techniques, so that system sizes up to N = 26 sites can
be achieved. In order to control the residual finite-size ef-
fects we attach infinite metallic leads to both ends of the
linear chain. The dynamical nature of the lattice disorder
is restored upon averaging over up to 10° lattice config-
urations X, defining the physically observable Green’s
function as G(|i — j|,w) = (G(i, j,w, X))x. The electri-
cal conductivity is then evaluated via the Kubo formula
expressed in terms of the exact electron propagators, ne-
glecting vertex corrections as was done in Ref. ﬂﬂ] and
validated in Ref. @] in a model for metallic fullerenes.
This procedure allows to establish a direct connection be-
tween the excitation spectrum and the transport prop-
erties, capturing the essential aspects of the transport
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FIG. 1: Quantities calculated from the solution of the model
Eq.(1), representative for crystalline rubrene at room tem-
perature (7" = 0.2t with t = 143meV and A\ = 0.17 as taken
from Ref.(ﬂﬁ]). a) spectral function A(k,w), showing a well
defined band with a weakly renormalized dispersion; b) en-
ergy resolved localization length (red) and density of states
(blue); c) spatial extension of the electronic wave-function; d)
current-current correlation function (red), and the same func-
tion multiplied by the thermal occupation factor as it appears
in Eq. (2) (black dashed). The blue line is the Boltzmann
result for band electrons, B(w) = 3, §(w — €x)viTs, with e
the band dispersion and 7 the quasiparticle lifetime. The
data are evaluated with 10° statistical samples, respectively
on a),b)N = 2'% ¢), d)2® lattice sites.

mechanism which stem directly from the dual nature of
the electronic states (see below). [31] Here we present
results obtained on a one-dimensional molecular chain,
ideally corresponding to the direction of highest mobility
in the organic crystal.

Fig. [Oh shows the single-particle spectral function
A(k,w) = —Im G(k,w)/m [G(k,w) being the Fourier
transform of the Green’s function G(|i — j|,w)] that car-
ries information on the energy dispersion and lifetime
of the extended Bloch waves. Owing to the relatively
low values of A = 0.05 — 0.2 in organic semiconductors
m, @, @, |2__4]], no polaronic self-trapping is expected.
Indeed, at such moderate coupling strengths one obtains
a weakly renormalized band dispersion (dashed line) and
a quasi-particle scattering rate that increases with tem-
perature, 1/7 oc M((X; — X;)?) ~ MkgT, being propor-
tional to the disorder induced by the thermal lattice mo-
tion. We see from Fig. [Th that even at room tempera-
ture the scattering rate is sufficiently small compared to
the bandwidth to allow for the existence of well-defined
Bloch states. Moreover, the quasi-particles appear to be
sharper near the band edge, i.e. precisely for those states
that would be populated in a clean non-degenerate semi-



conductor. The states of low-momentum are partly pro-
tected by the “off-diagonal” nature of the inter-molecular
electron-lattice coupling, i.e. the fact that the dominant
interaction acts on the transfer integrals rather than on
the molecular energy levels. A perturbative calculation
yields 1/ o k at low momenta, but our numerical data
show that the suppression of scattering is not complete
and saturates to a finite value 1/7—g ~ 7AkpT.

While the k-space analysis carried out above would
point to a conventional scenario based on weakly scat-
tered momentum states, a different conclusion is reached
if one looks at physical quantities in real space. The
idea is that if one takes a shapshot of the system at a
given time the electronic wave-function will be appar-
ently localized by the instantaneous disordered landscape
of lattice deformations, even though the carrier actu-
ally diffuses on the long time owing to the dynamics
of the molecular lattice (diffusion eventually sets in at
times longer than the period of inter-molecular vibra-
tions, which is itself much larger than the timescale of
clectronic motion). [10,[11] To illustrate this point we cal-
culate the average spread of the electronic wave-function
for the states at a given energy, ljoc(w). Following Refs.
@, @], this quantity can be expressed in terms of the
density of states (DOS) p(w) = G(0,w) as

@) :/dW’p(w)p(w’)log(lw—W’I/IW’I)- (2)

The comparison of the localization length with the actual
DOS in Fig[lb shows that two classes of states of very
different nature coezist in the excitation spectrum. The
states within the band, (w 2 —2t), are effectively delo-
calized over hundreds of molecular sites and can there-
fore be treated in the wave representation. However, the
dynamical disorder induced in the inter-molecular trans-
fer integrals by the thermal lattice vibrations gives rise
to a tail of incoherent excitations emerging in the DOS
below the band edge, (w < —2t). These states have a
much shorter spatial extent and are ultimately respon-
sible for the localized character of the particles: the ac-
tual localization length is obtained as the thermal aver-
age l;;t o< [17 (w)e™@/k5T  which is dominated by such
incoherent tail states where lfoi(w) is maximum. As a
result, real-space probes of the electronic properties@]
will point to the presence of particles localized on few
molecular sites [10], as shown in Fig. k. On the other
hand, momentum-resolved probes such as angle-resolved
photoemissionm] should provide a picture in agreement
with the wave nature of electrons, as shown in Fig. [Ih.

To ascertain how the duality evidenced in the single-
particle excitation spectrum is reflected in the transport
properties, one needs to go beyond the semi-classical
Boltzmann treatment which is valid for band-like carriers
alone. We therefore resort to the Kubo formula

THo —w/kpT
= dwB P 3
=g / wB(w)e (3)

which expresses the mobility in terms of the current-

current correlation function in the limit of zero exchanged

momentum, B(w) = lir%fdwei“’t<[J(t),J(O)]> (no =
q—

ea? /h carries the dimensions of mobility, with a the aver-
age inter-molecular spacing, and Z = [ dwp(w)e=</FsT),
Inspection of Eq. (B]) shows that the temperature depen-
dent function B(w) represents the contribution to the
electrical conduction from the states at energy w, which
can be viewed as an “energy-resolved” carrier mobility.
The current-current correlation function calculated from
the exact electron propagators clearly shows that con-
duction from the band-like carriers seen in the spectral
function of Fig. [Th is reasonably well described by Boltz-
mann theory, that predicts a constant B(w) within the
band, see Fig. [Id. However, an additional transport
channel emerges due to the states below the band edge,
corresponding to the incoherent tail seen in the DOS
of Fig. [Mb. Both band-like and incoherent states are
therefore expected to contribute to the transport mech-
anism. Their relative role will depend crucially on the
temperature, being essentially controlled by the amount
of thermal lattice disorder (which sets the size of the in-
coherent tail) and to a lesser extent by their respective
thermal population, via the exponential term in Eq.(3]).
This interplay is best visualized by looking directly at
the integrand of Eq. (B]), i.e. the bubble B(w) weighted
by the Boltzmann factor (black dashed curve in [Id): at
T = 0.2t most of the weight is located right across the en-
ergy scale that separates the dynamically localized from
the delocalized states. Upon increasing the temperature,
the relative weight of the incoherent states progressively
increases up to the point where band states get competely
washed out, as their lifetime becomes shorter than the
inter-molecular transfer time 7 < ¢~

The mobility obtained from Eq. (@) is illustrated in
Fig. [ together with the limiting results valid for band
electrons alone (u ~ T~3/? and ~ T~ are obtained from
the Boltzmann treatment at kT < 2t and kT 2 2t,
see Refs. E, E]) and for the random diffusion of fully
incoherent states@, @] The latter corresponds to the
regime of “mobility saturation” ﬂﬂ, , ] that sets in
when the the mean-free path for band electrons falls be-
low the inter-molecular spacing, lmep S a, leading to a
complete loss of momentum conservation. Above this
temperature, which essentially coincides with the condi-
tion 7 <t~ given above, the charge transport proceeds
via the incoherent diffusion of carriers being randomized
at each jump as in a classical random walk. This mech-
anism results in a rather flat “metallic-like” power-law
behavior@, @], p ~ T~12 that should be contrasted
with the exponentially activated behaviour characteris-
tic of self-trapped polarons, occurring for much larger
values of the electron-lattice interaction, A 2 1. We see
from Fig. that the calculated mobility undergoes a
very broad crossover where it progressively interpolates
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FIG. 2: Mobility calculated from the Kubo formula in terms
of the electron propagators obtained from the numerical sim-
ulation. For realistic bandwidth and electron-lattice interac-
tion parameters for organic semiconductors (see Fig. 1), both
band-like conduction and incoherent diffusion contribute to
the transport mechanism in the relevant temperature range
around room temperature.

between the band-like regime and the incoherent diffu-
sion regime. In the temperature range of interest, these
two competing mechanisms are simultaneously present
and combine as independent transport channels. @, @]
Our results based on a model that incorporates the es-
sential ingredients relevant for crystalline organic semi-
conductors show that neither of the two limiting pictures
proposed in the past adequately describes the charge dy-
namics. Firstly, polaronic self-localization is prevented
in high-mobility organic semiconductors by the relatively
weak electron-lattice interactions. However, the opposite
view of band-like transport is not appropriate either: due
to the large thermal lattice fluctuations arising from the
mechanical softness of these systems, incoherent states
having a localized nature emerge and are found to co-
exist with more conventional Bloch states. Both band-
like and incoherent states actually contribute to the elec-
tronic properties of these materials but are expected to
show up differently according to the experimental probe.
Also, depending on the actual values of the bandwidth
and inter-molecular electron-lattice coupling relevant to a
given material, a whole range of intermediate behaviours
between the two limiting transport scenarios can arise,
which might explain the large variability of exponents of
the mobility  ~ T~™ observed in the literature. [1, [§]
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