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Efficient optical quantum state engineering
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We discuss a novel method of efficiently producing multi-photon states using repeated sponta-
neous parametric downconversion. Specifically, by attempting downconversion several times, we
can pseudo-deterministically add photons to a mode, producing various several-photon states. We
discuss both expected performance and experimental limitations.

PACS numbers: 42.50.Dv, 42.65.Lm, 03.67.Bg

Despite many advances in optical quantum informa-
tion processing, such as quantum cryptography [1], tele-
portation [2], and quantum computing (both proposals
[3] and simple demonstrations [4]), reliably and deter-
ministically creating even simple quantum optical states
remains a challenge. For example, on-demand single-
photon production is still elusive, despite significant re-
cent progress [5]. More complicated states can often be
created probabilistically using single photons, linear op-
tics, and feed-forward, but these schemes typically scale
exponentially poorly with the number of photons in the
state [6] or are prohibitively complicated [3]. In this let-
ter, we propose a novel method using repeated sponta-
neous parametric downconversion to closely approximate
applying the creation operator, allowing efficient pseudo-
deterministic preparation of a variety of states, with criti-
cal implications for applications including quantum com-
puting and quantum metrology.

Spontaneous parametric downconversion (a nonlinear
optical process in which one high energy photon in a laser
beam splits into a pair of lower energy photons, called the
signal and idler) has for many years been the workhorse
for producing high quality simple photon states, such as
heralded single photons [7] and entangled photons. More
recently, four-wave mixing (FWM) has been used to pro-
duce these states as well [8, 9]. Downconversion has also
been used to add a photon to a classical light field, with
nonclassical results [10]. However, one of the drawbacks
of these approaches is that they are nondeterministic,
i.e., the number of pairs of photons that are produced is
described by a random (thermal) distribution. One way
to overcome this problem and produce single photons de-
terministically is to monitor the signal mode of several
downconversion sources [11], or a single source pulsed at
several times [12, 13]; this allows one to herald the output
of the idler mode without directly measuring it, and then
select the source/pulse that produced the desired output.
We propose modifying this technique to drive downcon-
version (or FWM) weakly in a cavity until we produce ex-
actly one pair, thereby deterministically adding a photon
to the idler mode. Repeating this process, we can “build
up” a desired number state. Furthermore, by manipulat-
ing the polarization of the photon that is being added (or
equivalently, manipulating the polarization of the pho-
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FIG. 1: Diagram of proposed Fock-state source. A pulsed
laser pumps a downconversion crystal (DC). The signal pho-
ton of each created pair is detected, and the idler photon is
emitted into a storage cavity. Photons are allowed to accu-
mulate in the cavity until the desired number is reached. The
light can be switched out by rotating its polarization with
a Pockels cell (PC1), so the polarizing beam splitter (PBS)
reflects rather than transmits it.

tons already created before the next one is added), we
can efficiently and with high fidelity produce any state
that is expressible as a product of creation operators of
arbitrary polarization on a single mode:

|ψ〉 =

N−1
∏

n=0

(αna
†
H + βna

†
V )|0〉. (1)

First we will discuss the simplest application, creat-
ing Fock (photon-number) states. Our proposed design
(somewhat similar to that discussed in [14]) is shown in
Fig. 1. A series of laser pulses is incident on a nonlin-
ear crystal, with each pulse resulting in some probability
of producing one (or more) pair(s) of photons into two
separate spatial modes (the signal and idler modes). The
signal mode is detected, while the idler is allowed to prop-
agate through a cavity. The cavity length is such that
when the idler light makes one complete pass through the
cavity and returns to the crystal, the next laser pulse is
also passing through the crystal. This allows us to keep
adding identical photons nondeterministically to the idler
mode until we have the desired number of photons (as in-
dicated by the total number of signal photons detected).
Once we do, we release them using an optical switch, e.g.,
a Pockels cell and polarizing beam splitter (PBS). If we
have a photon-number-resolving detector for the signal
arm, we can add more than one photon on each pass, al-
lowing us to build up the state in fewer passes (although
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FIG. 2: Theoretical performance of Fock-state source versus
cavity transmission. Curves are shown for several values of N
(labeled), and several detector efficiencies (black solid, η=1;
blue dashed, η=0.95; red dotted, η=0.9).

we need to be careful not to overshoot the desired number
of photons in the cavity).

Fig. 2 shows the predicted performance as a func-
tion of cavity transmission, for different detector efficien-
cies. Here we assume a photon-number resolving detector
[15, 16], and the ability to tune the pump pulse intensity–
and hence the expected number of pairs–for each pass at
downconversion, although producing several pure pairs
per pulse remains experimentally challenging [35] (with-
out these assumptions, we would simply need more passes
to prepare the desired number of photons). Additional
experimental limitations, such as imperfect single-mode
collection or undesirable frequency entanglement, are dis-
cussed below. Our predicted performance greatly exceeds
current methods: e.g., creating a heralded four-photon
Fock state via single-pass downconversion is in principle
limited to 6.7% probability, and the best experimental
result is only 0.2% (with fidelity=0.6) [17]; even postse-
lecting on an attenuated coherent source cannot do better
than 19.6% probability. Our scheme could realistically
produce this state with >50% probability.

We now consider construction of more complicated
states. One of the more interesting states that we can
create is a number-path entangled state of the form
|NA, 0B〉+ |0A, NB〉 (known as a “N 00N ” state [18]). A
N 00N state can be used to reach the Heisenberg limit for
precision measurements, achieving a phase uncertainty
that scales as 1/N [18, 19, 20, 21]. This same state can
also be used for quantum lithography [22], demonstrating
“super resolution”. Originally proposed methods [6, 23]
for creating N 00N states using linear optics scaled expo-
nentially poorly with increasing N, even assuming perfect
optics, on-demand Fock-state sources, and detectors. A
recent proposal [24] suggests a method for creating N 00N
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FIG. 3: Diagram of proposed N 00N -state source. Similar to
the setup for the Fock-state source (Fig. 1), with the addition
of a Pockels cell (PC2) in the cavity to rotate the polariza-
tion of the photons as they are created, and a polarization-
independent switch (made up of a beamsplitter (BS), half-
wave plate (HWP), and Pockels cell (PC1)) in place of a
polarization-dependent switch. Inset shows the linear polar-
ization of 4 photons in the desired state.

states that scales efficiently using linear optics and feed-
forward, but the number of photons making up the N 00N
state varies nondeterministically in each attempt.
We start with the observation that a N 00N state in the

right/left circular polarization basis can be expressed as
a product of linearly polarized photons (neglecting nor-
malization) [21]:

(â†R)
N − (â†L)

N =
N−1
∏

n=0

[cos(nπ/N)â†H + sin(nπ/N)â†V ].(2)

This state is the product of N photons superimposed on
each other, with the polarization of the photons evenly
spaced by 180◦/N (see Fig. 3 inset). We can construct
this state by adding N photons one at a time to the field
in the cavity, and rotating the polarization of all pho-
tons in the cavity by 180◦/N every time a new photon is
added. The proposed setup, shown in Fig. 3, is similar to
the setup for making Fock states, with the addition of a
Pockels cell to rotate the polarization of the light in the
cavity [36], and a polarization-independent switch [37].
After the switch-out, wave plates and a polarizing beam
splitter can convert the state to the desired number-path
entangled state.
The predicted performance is shown in Fig. 4.

Comparing with Fig. 2, we can see that the probabil-
ity of successfully producing a N 00N state is signifi-
cantly lower than that of producing a Fock state with
the same number of photons. The primary reason is that
the N 00N state must be built up exactly one photon at
a time, whereas for the Fock state several photons can
be added in one pass. The additional passes for N 00N
state creation increase the sensitivity to cavity loss. Also,
the fidelity of the produced state is not perfect due to
higher-order terms in the downconversion Hamiltonian
(see below). Nevertheless, our predicted performance ex-
ceeds current state-of-the-art experiments [21] (by more
than an order of magnitude) and previous proposals us-
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FIG. 4: Theoretical performance of N 00N -state source.
Curves are shown for several values of N (labeled), and for
several different detector efficiencies (black solid, η=1; blue
dashed, η=0.95; red dotted, η=0.9).

ing linear optics. For example, the highest probability
[23] of creating an N=6 N 00N state with linear optics
is 0.097, assuming perfect on-demand Fock-state sources
(12 photons total), perfect optics, and perfect detector
efficiency. This level of performance is feasible with our
proposal, without these assumptions. Recent research
shows that N 00N states decohere very rapidly in the
presence of loss [25]; however, a similar superposition (of
the form |m,m′〉A,B + |m′,m〉A,B,m > m′) can greatly
improve the robustness against decoherence while keep-
ing the ability to perform sub-shot noise phase estimation
[26, 27]. To create such a state, we first observe that it
can be expressed as the product of a N 00N - and Fock-
state creation operators:

(â†A)
m(â†B)

m′

+ (â†A)
m′

(â†B)
m =

(

(â†A)
m−m′

+ (â†B)
m−m′

)

(â†A)
m′

(â†B)
m′

. (3)

Hence, in order to create this new state, we can create
two Fock states in the cavity, and then add a N 00N state.
We now briefly discuss the proposals limitations. For

our performance plots in Figs. 2 and 4, a “success” is
defined as an attempt with each created pair collected
and detected, with no photons leaking out of the cavity
before the process is complete, and with no extra pho-
tons (although for creating Fock states, it is still a success
if the number of photons lost is equal to the number of
extra photons). Photon loss for each pass through the
cavity must therefore be minimized [38], and the down-
conversion photons must be efficiently collected in pure
states, i.e., they must be indistinguishable in every de-
gree of freedom [28, 29]; similar requirements hold, e.g.,
to realize teleportation [2].
The effect of the higher-order terms of the downconver-

sion Hamiltonian must be taken into account. There will
be some probability of creating two pairs, although this
term can be completely eliminated if the transmission of
the cavity is high enough, since in the limit of no cavity
loss, the crystal could be pumped infinitely weakly, low
enough that N single pairs will almost certainly appear
before one double pair is generated. Even when no pairs
are created, the effect of higher-order terms in the Hamil-
tonian of the downconversion can alter the state in the
cavity. Treating the pump pulse classically, we have [30]:

eiǫĤ = 1− ǫâ†b̂† + ǫ2

2
â†2b̂†2 − ǫ2

2
ââ†b̂b̂†, (4)

where ǫ is the effective interaction strength, and â and b̂
refer to the idler and signal modes, respectively. Terms
of order ǫ3 are dropped, as are terms where b̂ would be
acting on the vacuum (giving zero). The second term of
Eq. (4) creates the desired single pair of photons. The
third term creates an undesirable two pairs, which could
be detected with a photon-number-resolving detector,
and eliminated by driving weakly enough. The fourth
term, which can be interpreted as the creation and then
destruction of a pair, can alter the state in the cavity,
even though it does not add or remove any photons. If,
for example, we are trying to create a N 00N state with
N=4, after the creation and rotation of two photons, the
state in the cavity will be (neglecting normalization)

(â†H + â†V )â
†
V |0H0V 〉 = |1H1V 〉+

√
2|0H2V 〉. (5)

Applying the Hamiltonian in Eq. (4) (assuming no signal
photon is present, i.e., projecting out the contribution
from the second and third terms), gives

(1− ǫ2

2
âH â

†
H)(|1H1V 〉+

√
2|0H2V 〉) =

(1− ǫ2)|1H1V 〉+ (1− ǫ2

2
)
√
2|0H2V 〉, (6)

which differs from the initial state in Eq. (5). This change
adds coherently with each pass, and lowers the fidelity be-
tween the produced state and the desired state, even as
ǫ approaches zero. However, the effective downconver-
sion operator in Eq. (6) can be undone (to order ǫ2) by
applying the same effective operator with the orthogonal
polarization:

(1− ǫ2

2
âH â

†
H)(1− ǫ2

2
âV â

†
V )|ψ〉 =

(1− ǫ2

2
(âH â

†
H + âV â

†
V ))|ψ〉. (7)

Since the state in the cavity |ψ〉 always has a definite

number of photons, it is an eigenstate of âH â
†
H + âV â

†
V ,

and therefore an eigenstate of the operator in Eq. (7).
We can approximate the alternate application of these
operators by adding the photons to the cavity in a dif-
ferent order, resulting in a higher average overlap with
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the desired state (e.g., from about 0.56 to 0.83 for N=8).
Preliminary results indicate that this state, with a pho-
ton distribution on the Poincaré sphere similar to that of
a N 00N state, is still useful for quantum metrology; more
detailed investigation of this is an interesting possibility
for future study.
In conclusion, we have proposed a novel technique that

can efficiently produce a variety of multi-photon states
with high fidelity, including Fock and N 00N states. Al-
though we discussed only the case where we start with
the vacuum in the idler mode and build up states with a
well-defined number of photons, these techniques can also
be applied to states that do not have well-defined photon
numbers, such as squeezed or coherent states. Another
possibility which may allow for the creation of additional
interesting states is supplying something other than the
vacuum for the initial signal field, such as a weak co-
herent state [14] or zero-one photon entangled state [31].
Finally, if we replace the weak downconversion source in
our cavity with a weak beam splitter, and allow a state to
pass through it multiple times until a photon is detected
in the reflected path, we can in principle remove a sin-
gle photon from the state with arbitrarily high efficiency.
The ability to subtract photons allows for generation of
interesting states, including N 00N states [32]. Combin-
ing the ability to both add and subtract photons [10] may
allow for direct tests of fundamental physics (such as the
bosonic commutation relation [33]) as well as creation of
otherwise-unreachable states.
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H
+

isin(nπ/N)â†
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