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Scheme for proving the bosonic commutation relation using single-photon interference
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We propose an experiment to directly prove the commutation relation between bosonic annihi-
lation and creation operators, based on the recent experimental success in single-photon subtrac-
tion and addition. We devise a single-photon interferometer to realize coherent superpositions of
two sequences of photon addition and subtraction. Depending on the interference outcome, the
commutation relation is directly proven or a highly nonclassical state is produced. Experimental
imperfections are assessed to show that the realization of the scheme is highly feasible.

The uncertainty principle, which is at a rudiment of
quantum physics, is due to the non-zero commutation
relation between complementary observables. The quan-
tum algebra of the commutation relation plays an im-
portant role in many of the paradoxes and applications
of quantum physics. In particular, the bosonic commu-
tation relation

[â, â†] = 11 (1)

between creation â† and annihilation â operators is one
of the fundamental ones, which is directly related to the
commutation relation between position and momentum
observables.
On the other hand, the wave-particle duality is another

important doctrine of quantum physics. The beauty of
quantum physics lies in the fact that we can explain the
seemingly contradictory riddle of duality using one the-
ory. Single-photon interference is one of the examples
due to the duality of nature and accurately interpreted
by quantum physics. The duality and uncertainty princi-
ple have been studied since the birth of quantum physics
and there have been many experimental evidences which
confirm quantum mechanical predictions. However, as
far as we are aware, there has not been a direct proof of
the bosonic commutation relation, which we are propos-
ing in this paper based on single-photon interference.
We have recently witnessed experimental successes in

photon-level operations to subtract [1] and add [2] a sin-
gle photon in a light field. These prove to be important as
they are essential building blocks for quantum-state en-
gineering and provide a tool to experimentally show the
foundations of quantum mechanics [3]. It is remarkable
that adding a definite number of photons any classical
field can be made into a nonclassical one as its statistics
in phase space cannot be described by a classical the-
ory [4]. For the recent interest of quantum entanglement,
it has been experimentally shown [5] that entanglement
can be enhanced by subtracting a photon from one of the
two modes of a two-mode squeezed state.
Before providing details of our proposal to directly

prove the bosonic commutation relation, we briefly de-

scribe the single-photon-level operations involved. We
then devise a single-photon interferometer using the
wave-particle duality to interfere two subtraction pro-
cesses and show the commutation relation between sub-
traction and addition processes. Heralded by the interfer-
ence outcome, we can also produce a highly nonclassical
state.
Let us consider a photon-subtraction [1] scheme re-

cently realized [6, 7]. A photon is subtracted from input
state |ψ〉 = ∑∞

n=0 C(n)|n〉 by splitting out a single pho-
ton using a lossless beam splitter of high transmittivity,
t (low reflectivity r) and a photodetector. With use of
the standard form of a beam splitter operator B̂(t) [8],
we find the beam splitter output for the input state |ψ〉
in mode a, as

B̂(t)|ψ〉|0〉 =
∞
∑

n=0

C(n)

n
∑

k=0

(

n
k

)
1

2

rktn−k|n− k〉|k〉 (2)

assuming nothing (vacuum state |0〉) has been injected
into the other input port of mode b. The binomial co-
efficient has been denoted by

(

n

k

)

. With T ≈ 1, if one
particle is found at the output bout, the conditional prob-
ability of having n− 1 particles at output aout is approx-
imated as follows:

Psub(n− 1) = Ns

n!

(n− 1)!
T n−1P0(n) ≈ NsnP0(n) (3)

taking T = t2 and P0(n) = |C(n)|2. Throughout the
paper, N with a subscript denotes a respective normal-
ization factor. The proportionality on n in Eq. (3) reflects
the coefficient

√
n which emerges when the annihilation

operator â is applied to a Fock state |n〉 [9]. As far as
the photon number statistics is concerned, the subtrac-
tion scheme can be understood by treating the photons
as conventional particles and assuming a beam splitter
as a device which randomly chooses incoming particles
to change their directions with the probability 1− T .
Recently, a very neat scheme to add a photon [2] has

been realized using a parametric downconverter which
produces twin photons to modes a and b and is described
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by Ŝ(s) = exp(−sâ†b̂†+sb̂â) with the coupling parameter
s [11]. For the input state |ψ〉 in mode a and the vacuum
in the ancilla mode b, the output state is

Ŝ(s)|ψ〉|0〉 =
∞
∑

n=0

C(n)

µn+1

∞
∑

k=0

(−λ)k
√

(n+ k)!

k!2
|n+ k〉|k〉,

(4)
where µ = cosh s, ν = sinh s and λ = ν/µ. Once a
photon is detected in output mode b, we find that the
state in Eq. (4) brings about the conditional probability
Padd(n+1) ≈ Na(n+1)P0(n), assuming µ ≈ 1. Here, the
factor n + 1 is the realization of

√
n+ 1 as the creation

operator â† acts on |n〉 [9].
In [7], the authors compare two sequences of photon

addition and subtraction and show the quantum nature
of the operations through the photon number distribu-
tion and the phase-space statistics. However, it fails to
show the exact commutation relation other than the dif-
ference between the two sequences. In the experiment [7]
for a thermal input field, it has been found that the mean
photon number after the sequence of photon subtraction
then addition (â†â) is larger by one photon than that
after the sequence of photon addition then subtraction
(ââ†). At the first glance, this is odd because the com-
mutation relation (1) seems to advocate the other way
round. However, the mean values are obtained after the
normalization of the density operators to show only the
statistical averages, thus they cannot reveal the commu-
tation relation directly. This is why we need to carefully
design a new setup for its direct proof.
Direct proof of commutation relation.- The density op-

erator of a field obtained by adding a photon after sub-
tracting one is ρ̂1 = N1â

†âρ̂0â†â where ρ̂0 is the den-
sity operator for the initial field. On the other hand, by
subtracting a photon after adding one the density oper-
ator becomes ρ̂2 = N2ââ

†ρ̂0ââ†. Once these two experi-
ments are separately performed, it is not possible to show
the commutation relation directly from the experimen-
tal data. For example, the photon number distributions
will tell us about the difference between â†âρ̂0â†â and
ââ†ρ̂0ââ† rather than (ââ†− â†â)ρ̂0(ââ†− â†â). It is then
clear that we should have a coherent superposition of
two sequences of operations through their interference,
to directly show the commutation relation. This is an
interesting remark because the concept of interference is
associated to the wave nature.
Let us consider the setup in Fig. 1. The beam splitters,

BS1 and BS2, with the same high transmittivity subtract
photons from the input field. A parametric downcon-
verter produces twin photons into two different modes.
A photon counting at PD0 heralds that a photon has
been added to the input field which passed through the
downconverter. The two reflected fields at BS1 and BS2
interfere at the 50:50 beam splitter BS3 to erase infor-
mation about their paths. Had there not been BS3, one
photon detected in mode b but not in mode c indicates
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FIG. 1: Experimental setup. BS1 and BS2 are beam splitters
of high transmittivity. A photon is added by a parametric
downconverter between BS1 and BS2. A 50:50 beam splitter
(BS3) superposes the reflected fields from BS1 and BS2. The
output field is selected, conditioned on registering a photon
at only one of the two photodetectors PD1 and PD2. a, b, c
and d label the field modes.

that one photon has been subtracted before the photon
addition process. On the contrary, if one photon is de-
tected in mode c, we know that a photon subtraction has
been performed after the photon addition. However, as
the photodetectors, PD1 and PD2, are placed after BS3,
by having one photon registered in either of the pho-
todetectors, there is no way to find out if the photon was
subtracted before or after the photon addition process.
Thus detecting one photon is to herald a superposition
of two possible sequences â†â and ââ†.
A beam splitter is a unitary operator and its action is

described by the following input-output relation for two
modes b and c:

B̂(t)

(

b̂
ĉ

)

in

B̂†(t) =

(

tb̂+ rĉ

tĉ− rb̂

)

out

. (5)

For a 50:50 beam splitter like BS3, the reflectivity r =
1√
2
. The two different signs of ± in the right-hand side of

Eq. (5) ensure the unitarity of the beam splitter operator
and play a key role in the bunching of two photons for
the Hong-Ou-Mandel interferometer [12]. With use of
Eq. (5), we find that if a photon is detected at PD1 but
not at PD2, the operation by the whole set up is â†â+ââ†,
assuming a photon is added between BS1 and BS2. Note
that the overall operation is the constructive interference
of two operations both of which transform an initial state
into nonclassical ones. On the other hand, if a photon is
detected at PD2 instead of PD1, the operation is ââ† −
â†â = 11, which means that the conditional output field
should be identical to the input field. This is the direct

proof of the bosonic commutation relation [13].
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We now show how our scheme works by following each
step carefully. A general pure input state can be written
as |φ0〉. Once the pure state case is clear, the extension
to a mixed state input is straightforward. We assume
nothing is injected to the unused input ports of BS1 and
BS2. In the following argument, normalization is not
included for simplicity. According to Ref. [9], the action

of BS1 under the condition tâ
†
â ≈ 11,

B̂ab|φ0, 0〉ab ≈ (1 +
r

t
âb̂†)|φ0, 0〉ab. (6)

The subscripts a, b, · · · denote modes in Fig. 1. With
µ ≈ 1 and ν ≪ 1, we approximate Ŝ|00〉 ≈ (1−λâ†d̂†)|00〉
again without normalization. We measure a photon at
photodetector PD0, then the conditioned state is de-
scribed by

d〈1|Ŝad(1 +
r

t
âb̂†)|φ0, 0, 0〉abd

≈ (−λâ† − r

t
λµââ†b̂† +

r

t
νb̂†)|φ0, 0〉ab, (7)

where the unitary operation ŜâŜ† = µâ + νd̂† has also
been used. Passing through BS2 of the same high trans-
mittivity as BS1, the state of the field modes a, b and c
becomes

− λr
[

(1 + â†â)ĉ† + (tµââ† − ν

tλ
)b̂†

]

|φ0, 0, 0〉abc. (8)

As we impose a condition tµ ≈ ν

tλ
≈ 1, which is well sat-

isfied for the proposed experimental scheme, the output
field after BS2 and BS3 is approximated to −λr(ââ†ĉ† +
â†âb̂†)|φ0, 0, 0〉abc. Now, by the final 50:50 beam splitter
BS3, the field becomes

λr√
2
[(ââ† − â†â)b̂† − (ââ† + â†â)ĉ†]|φ0, 0, 0〉abc (9)

which shows that one photon detected in mode b by PD2
and none in mode c should result in a unit operation 11
while in mode c by PD2 (none in mode b) the operation
is â†â+ ââ†.
Experimental feasibility.- There are some details we

have to consider for experimental feasibility of our
scheme. One problem comes from the fact that there is no
photon-level detector available. Thus we have to replace
the photon number resolving detectors in our theory with
on-off type detectors realized by avalanche photodiodes,
which discern there being photons from no photons with
high efficiency. The ‘on’ event is represented by 11−|0〉〈0|
and ‘off’ by |0〉〈0|.
We exemplify the effect of the realistic experimental

condition for the coherent input state, |α〉, which is at the
boundary between quantum and classical worlds. Then
the output state conditioned on the photodection at the
avalanche photodiode PD2 but not at PD1 is found to
be ≈ |tα〉 (In fact the resultant state is mixed but other
terms are negligible). In order to assess the closeness

(a) (b)
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FIG. 2: (Color online): Wigner function W (β) for the out-
put state conditioned on photodetection only at PD1 (a) or
only at PD2 (b) when the initial state is a coherent state of
amplitude α = 1. T = 0.99 and µ = 1.005 (s = 0.1).

between the input state |φ0〉 and the conditional out-
put state of density operator ρ̂out, the fidelity defined
as F = 〈φ0|ρ̂out|φ0〉 is utilized. Taking realistic exper-
imental values of T = 0.99 and s = 0.1, we find that
the fidelity F ≈ e−(1−t)2|α|2 . The fidelity is as high as
F > 99.99% for |α|2 . 2. Thus, the unit operation (11)
which shows the bosonic commutation relation can be
proven efficiently.

It is useful to represent a quantum state in phase space
by quasi-probability functions as they visualize the quan-
tum state and can be used to show its nonclassical na-
ture. In particular, we utilize the Wigner functionW (β),
where the real and imaginary parts of β are two conjugate
variables (see [11] for its definition). It is well known that
the Wigner function may show negative values reflecting
the nonclassical nature of a given state. Now, the Wigner
function for the output state conditioned on the photode-
tection only at the avalanche photodiode PD1 (PD2) for
the initial coherent state of α = 1, is shown in Fig. 2(a)
(Fig. 2(b)). We can clearly see the negativity around the
origin of the phase space in (a) which is contrasted to the
positive Gaussian Wigner function in (b).

The inefficiency of avalanche photodetectors was not
a problem in separate photon addition and subtraction
experiments because it only lowers the success probabil-
ity. However, in our proposal, another important fact is
to make sure that one output port of BS3 is empty while
the other registers a photon. If the detection efficiency is
low, only one of the detectors may click while the other
is silent even though there are photons at both modes b
and c after BS3. However, we stress that this “failure”
probability is very low regardless of the detection ineffi-
ciency. It is straightforward to obtain the probability for
both the modes b and c having photon(s) before the final
detection as Pbc = Tr[ρ̂out11a⊗(11−|0〉〈0|)b⊗(11−|0〉〈0|)c].
Then, it can be conditioned on the probability of the de-
tection at PD1, Pb = Tr[ρ̂out11a ⊗ (11 − |0〉〈0|)b ⊗ 11c], so
that the conditional probabilities Pbc|b = Pbc/Pb (and
Pbc|c in the same manner) can be obtained. These condi-
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FIG. 3: (Color online) Wigner functions W (β) for the output
field of mode a for photodetection only at PD1 (a) or only at
PD2 (b). The average photon number of the initial thermal
field is n̄ = 1. T = 0.99 and µ = 1.005.

tional probabilities are only Pbc|b ≈ 0.2% (Pbc|b ≈ 0.2%)
and Pbc|c ≈ 2% (Pbc|c ≈ 1%) for T = 0.99, s = 0.1, with
the initial coherent state of amplitude α = 1 (α = 0.6).
This means that our scheme is robust against the detec-
tion inefficiency. For example, suppose that the detec-
tion efficiency is 45% for both PD1 and PD2 and we look
at the case of photodetection only at PD2 to prove the
commutation relation. A simple analysis based on the
aforementioned values immediately leads to the conclu-
sion that the degradation of the fidelity is less than 1.1%
(0.55%) for α = 1 (α = 0.6).
The conditionally-prepared state in mode a can be

completely characterized by means of homodyne detec-
tion. This allows one to reconstruct its Wigner function
W (β) in phase space. In an experiment involving homo-
dyne detection, a thermal state, which is a bosonic state
in thermal equilibrium at a given temperature [11] and
can also be implemented by phase and amplitude ran-
domization of a coherent field, may be handier to use as
an input, because it does not require precise phase con-
trol of the local oscillator. Consider that the initial field
is a thermal field of mean photon number n̄. Figs. 3 show
the Wigner functions for the output field conditioned on
photodetection at PD1 in (a) and PD2 in (b). While
the Wigner function in (b) shows a Gaussian profile as
for the initial thermal field, that in (a) shows a negative
dip at the origin, manifesting nonclassicality. The levels
of homodyne detection efficiency reached in current ex-
periments guarantee that these effects should be clearly
visible in a realistic situation [6, 7]. The dark count rate
of photodetectors could generally be neglected in photon
subtraction and addition experiments [1, 2, 5, 6, 7].
Remarks.- We have devised a single-photon interfer-

ometer based on photon addition and subtraction tech-
niques, realized in numerous labs worldwide. Our inter-
ferometer will enable the first direct test of the bosonic
commutation relation as it superposes two different se-
quences of operations. Heralded by the interference out-

come, we can also produce a nonclassical state which may
be very different from the initial state. The assessment
of experimental inefficiencies suggest that the scheme can
be readily implemented with high feasibility.
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