
1 
 

Avalanche-Induced Current Enhancement in Semiconducting 
Carbon Nanotubes 
 
Albert Liao1, Yang Zhao1, Eric Pop1, 2,* 

1Dept. of Electrical and Computer Engineering, Micro and Nanotechnology Laboratory, University 

of Illinois, Urbana-Champaign, IL 
2Beckman Institute, University of Illinois, Urbana-Champaign, IL 

 

 

 

Semiconducting carbon nanotubes under high electric field stress (~10 V/µm) display a striking, 

exponential current increase due to avalanche generation of free electrons and holes. Unlike in other 

materials, the avalanche process in such 1D quantum wires involves access to the third sub-band, is 

insensitive to temperature, but strongly dependent on diameter ~exp(-1/d 2). Comparison with a 

theoretical model yields a novel approach to obtain the inelastic optical phonon emission length, 

λOP,ems ≈ 15d nm. The combined results underscore the importance of multi-band transport in 1D 

molecular wires. 
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 Electrical transport in one-dimensional (1D) nanomaterials is of much fundamental and 

practical interest. Among these, single-wall carbon nanotubes have remarkably high performance, 

displaying quasi-ballistic transport at sub-micron dimensions [1], and excellent low-field mobility 

even in longer, diffusive samples [2]. Despite such progress, less is known about diffusive transport 

at high fields (>1 V/μm). This regime sets the peak current-carrying ability, and provides a glimpse 

into the behavior under extreme electrical stress conditions. For instance, the maximum current 

capacity of metallic single-wall nanotubes (m-SWNTs) is 20–25 µA when limited by Joule heating 

and optical phonon back-scattering [3, 4]. The maximum current capacity of semiconducting single-

wall nanotubes (s-SWNTs) under diffusive transport is less established, although a 25 µA limit has 

also been suggested for single-band conduction [5]. However, experimental data indicates this limit is 

exceeded under ambipolar transport [6], and theoretical estimates also suggest this value can be 

surpassed when multiple sub-bands are efficiently involved [7]. 

In this Letter we report a remarkable exponential current increase beyond the 25 µA 

“diffusive limit” in Ohmically contacted s-SWNTs under avalanche impact ionization conditions. We 

investigate transport up to electrical breakdown and find the current in s-SWNTs first plateaus near 

~25 µA, then sharply increases at high fields (~10 V/µm). This behavior is not seen in the many m-

SWNTs tested. The current “up-kick” is attributed to the onset of avalanche impact ionization (II), a 

phenomenon observed in semiconductor p-n diodes and transistors at high fields [8-11], but not 

previously measured in nanotubes. We explore the behavior of s-SWNTs in such extreme conditions 

and demonstrate a novel approach for obtaining the optical phonon (OP) scattering length, which is 

the strongest energy relaxation process at high fields, and itself a fundamental transport parameter. 

Carbon nanotubes were grown by chemical vapor deposition (CVD) from patterned Fe 

catalyst on 100 nm thermal SiO2 and highly p-doped Si wafers which also serve as back-gates. The 

nanotubes were top-contacted by evaporating 40 nm of Pd, as shown in Figs. 1A and 1B. Electrode 

separation varied from L ~ 1-4 μm and typical contact resistance was Ohmic, in the range RC ~ 30-
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50 kΩ, as judged from low-field I-V measurements. Metallic and semiconducting nanotubes were 

sorted by their on/off ratios, measuring current (ID) vs. gate-source voltage (VGS), as in Fig. 1C. As-

grown devices show p-type behavior with negative threshold voltage (VT). Dimensions were obtained 

by atomic force microscopy (AFM), indicating diameters were in the range d ~ 2-3.6 nm. 

Current vs. drain-source voltage (VDS) measurements were made in air and vacuum. In air, 

metallic nanotubes saturate from self-heating and strong electron-phonon scattering [4] up to Joule 

breakdown, as in Fig. 1D. By contrast, most semiconducting tubes turned on at large |VGS| exhibit a 

sudden current increase before Joule breakdown (comparison in Fig. 1D). Additional measurements 

carried out in vacuum (~10-5 Torr, Figs. 2-5) allow further study of the current up-kick without 

breaking the nanotubes by oxidation. It is important to note that devices were measured in the reverse 

bias regime, with VGS < 0 < VDS and |VGS| > |VDS| [7]. By contrast, in Schottky mid-gap contacted 

devices, the ambipolar regime VDS < VGS < 0 “splits” the potential drop along the nanotube resulting 

in lower longitudinal electric fields [6, 7, 12] and transport by both electrons and holes. In the reverse 

bias regime, holes are the majority carriers in our s-SWNTs until the avalanche mechanism partially 

turns on the conduction band (Fig. 2A). 

At first glance, several mechanisms may be responsible for the current increase at very high 

fields (~10 V/µm) in our s-SWNTs, all various forms of “soft” (reversible) breakdown [14]. These 

are Zener band-to-band (BB) tunneling [13], avalanche impact ionization (II), and thermal generation 

current. Under BB transport electrons tunnel from the valence to the conduction band. The 

probability is evaluated as PBB ~ exp(–EG
2/qħvFF), where EG is the band gap (~0.84/d eV/nm), vF is 

the Fermi velocity, and F is the electric field [13]. During avalanche II holes gain high energy in the 

valence band, then lose it by creating electron-hole pairs (EHPs) as shown in Fig. 2A. Inelastic 

optical phonon (OP) emission is the strongest competing factor to II, given the large OP energy (ħωOP 

~ 0.18 eV). The II probability is estimated as PII ~ exp(-ETH/qλOP,emsF) [8, 15, 16]. Here we take 

λOP,ems ~ 14d nm as the spontaneous OP emission mean free path (MFP) by holes or electrons [16], 



4 
 

and ETH is the avalanche energy threshold. Comparing the two mechanisms in Fig. 2B suggests 

impact ionization is considerably more likely for the electric field and nanotube diameter range in this 

study. BB transport does become important when bands are significantly more bent as a result of 

sudden spatial changes in electrostatic or chemical doping, leading to local fields of the order 100 

V/µm (1 MV/cm) or higher [17, 18].  

Previous theoretical work has shown II in s-SWNTs is not possible until the third sub-band is 

occupied [16], due to angular momentum conservation. Hence, the II threshold energy measured 

from the edge of the first band scales as ETH ~ 3/2EG ~ 1.26/d (nm), which is greater than the band 

gap, as is typical in other semiconductors [10, 11]. To determine if the third sub-band is populated in 

our experiments, we look at the nanotube density of states (DOS), in Fig. 2C. Each Van Hove 

singularity represents the beginning of a sub-band. As the gate bias is lowered beyond threshold, the 

Fermi level inside the nanotube shifts to the right on the DOS plot and the third sub-band begins to 

fill at approximately |VGS-VT| ~ 15 V. The observed VT for our devices is in the range of -7 to -15 V. 

Thus, filling the third sub-band is easily within reach experimentally, also demonstrated in Fig. 3. In 

addition, we find direct injection into higher sub-bands at the contacts is also possible, as previously 

suggested by Ref. [7]. We estimate this in Fig. 2D using a Landauer-WKB integral to calculate the 

conductance associated with direct injection into the first three sub-bands at the Pd electrode. 

Naturally, injection into higher sub-bands depends strongly on voltage, and while direct injection into 

the third band is possible, we expect that high-field inter-valley scattering [19, 20] and gate-

controlled charge distribution (Fig. 2C) are primarily responsible for populating the higher sub-bands. 

The effects of gate voltage on the impact ionization tail for nanotube devices of different 

lengths, but similar diameters are shown in Fig. 3.  First, for a given length, the same current up-kick 

is observed despite the value of VGS, i.e. the four data curves converge on the “tail” region. Second, 

given the similar diameter (similar II threshold ETH) it is apparent that the onset of the avalanche up-

kick happens around the same approximate field (~VDS/L), not the same drain voltage. The 
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experimental results are in good agreement with our sub-band injection and DOS calculations (Fig. 2) 

where the occupation is dependent on VGS and the sub-band current contribution is dependent on VDS.  

An important characteristic of the avalanche process in many semiconductors such as silicon 

is the negative temperature dependence of the II coefficient [9]. As the phonon scattering rate 

increases with temperature, the free carriers gain energy less efficiently from the field, and the II rate 

decreases at higher temperatures. Here, such trends are examined in Fig. 4A, showing experimental 

data taken from 150 K to 300 K. Unlike in silicon, we observe negligible temperature dependence of 

the high-bias impact ionization tail region. The essential difference lies in that the optical phonon 

(OP) emission MFP (λOP,ems) varies minimally with temperature in SWNTs. As the OP energy is 

much greater than in other materials, the OP occupation NOP = 1/[exp(ħωOP/kBT)-1] is very small, 

 1, where kB is the Boltzmann constant. Following [4], the spontaneous OP emission MFP can be 

written as λOP,ems = [NOP(300)+1]/[NOP(T)+1]λOP,300 where λOP,300 ≈ 14d [16]. This MFP is shown for 

two diameters as the inset to Fig. 4A, illustrating the negligible temperature variation. The lack of 

temperature dependence and that of a significant current (Joule heating) dependence of the up-kick 

also indicates there is no significant contribution from thermal current generation. Quite the opposite, 

given the generation of EHPs rather than OPs during II, a lowered Joule heating rate in the highest 

field region near the drain is expected. 

In order to better understand the field dependence of II, we have modified an existing SWNT 

model [4] by including II as an additional current path through a parallel resistor. The choice is 

motivated by the physical picture in Fig. 2A, which shows electron transport in the conduction band 

“turning on” as an additional channel at fields high enough to induce hole-driven II. The expression 

for this resistor is given as RII = Rexp(ETH/qλOP,emsF), where R is for single-band transport, computed 

self-consistently with the SWNT temperature. The results are shown in Fig. 4B with λOP,ems included 

as mentioned above, and without any other adjustable parameters. Despite being an “augmented” 

single-band model, the simulation correctly captures the experimentally observed current up-kick and 
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its delayed voltage onset (also see Fig. 1D). The straightforward analysis also allows us to gain 

physical insight into the avalanche process, and to intuitively extract a few more key parameters. 

In the parallel resistor approach, the avalanche current is III ≈ ISexp(-ETH/qλOP,emsF), where IS 

is the saturation current reached before II becomes significant. Inserting the expected diameter 

dependence ETH ≈ E1/d and λOP,ems ≈ λ1d, we obtain III ≈ ISexp(-E1/qλ1Fd 
2), where E1 and λ1 are the 

threshold energy and MFP for a nanotube of diameter 1 nm. Consequently, the average field at which 

III = IS/2 is given by <FTH> ≈ E1/qλ1d 
2ln(2). We empirically extract this field in Fig. 5A and plot it vs. 

1/d 
2 for several diameters (d ~ 2.2-3.6 nm) in Fig. 5B. The slope of the linear fit thus scales as the 

ratio between the II threshold energy and the inelastic MFP, E1/λ1. However, the avalanche process is 

a strong function of the field, and most EHPs are generated at the peak, FTH,MAX. The latter is 

estimated by noting that the potential near the drain has a dependence V(x) ≈ ℓF0sinh(x/ℓ), where F0 ~ 

1 V/µm is the saturation velocity field and ℓ is an electrostatic length scale comparable to tox [21, 22]. 

Fitting this expression to our voltage conditions and nanotube dimensions, we find FTH,MAX/<FTH> ~ 

4.5 for L ~ 1 µm device, and 3.5 for L ~ 2 µm. Thus, using the peak instead of the average field, the 

empirically extracted slope gives E1/λ1 ~ 0.088 eV nm, where we take E1 = 1.26 eV as the bottom of 

the third sub-band. Accounting for fit errors, this yields λ1 = 15 ± 3 nm as the inelastic OP emission 

MFP for d = 1 nm, or generally λOP,ems = λ1d. This value is in good agreement with the theoretically 

predicted 14d nm in Ref. [16], and our approach demonstrates an additional, novel empirical method 

for extracting this important transport parameter from high-field electrical measurements. 

Before concluding, it is interesting to compare our results to those of Marty et al [23], who 

studied exciton formation during high-field unipolar transport in SWNTs. They observed radiative 

exciton recombination at high fields, but did not observe the dramatic current increase before 

breakdown. This was reasonably attributed to direct exciton annihilation, rather than the avalanche 

generation of free carriers. By contrast, our nanotubes have ~2x larger diameters and correspondingly 

smaller band separations and exciton binding energies, and Ohmic Pd contacts rather than highly 



7 
 

resistive Co contacts. In addition, all our measurements except Fig. 1D were carried out in vacuum, 

allowing repeated study of the current up-kick which was not always observable in air before Joule 

breakdown. While excitonic generation and recombination may play a role in our samples, we 

suggest that the current increase is possible because most free EHPs are generated in the high-field 

region within a few mean free paths (10-100 nm) of the drain. Thus, generated electrons are swept 

out into the electrode by the high field within 0.1-1 ps (Fig. 2A), much faster than the recombination 

lifetimes (10-100 ps) [24]. In addition, the high temperatures and high fields in these conditions will 

contribute significantly to exciton instability, despite their relatively high binding energy. 

In summary, we observe a remarkable current increase beyond 25 µA in semiconducting 

SWNTs driven into avalanche impact ionization at high fields (~10 V/µm). By analyzing near-

breakdown I-V data, we find the avalanche process to be nearly temperature independent, but 

strongly diameter dependent ~exp(-1/d 2), unlike in other materials. In addition, a novel estimate of 

the inelastic optical phonon scattering length λOP,ems ≈ 15d nm is obtained by fitting against a model 

of the high-field current “tail.” We note that upper sub-band transport must be considered at high 

bias, and has a significant effect on the current carrying capacity of such nanomaterials. The results 

also suggest that avalanche-driven devices with highly non-linear characteristics can be fashioned 

from semiconducting carbon nanotubes. 

We acknowledge valuable discussions with D. Jena, M. Kuroda, J.-P. Leburton and M. Shim. 

This work was supported in part by the Arnold O. Beckman award from the University of Illinois, by 
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Figure Captions 

 

Figure 1: Metallic and semiconducting SWNTs up to breakdown in air. (A) Schematic cross-section 

of back-gated nanotube. (B) Scanning electron microscope (SEM) top-view image of a fabricated 

device. Semi-circular electrodes are used for tighter control of device length. Scale bar is 10 µm. (C) 

Back-gate voltage dependence (VGS) of semiconducting and metallic SWNT showing typical on/off 

ratios. (D) Drain voltage (VDS) dependence up to breakdown in air of semiconducting and metallic 

SWNTs. Metallic device saturates before breakdown, whereas semiconducting tube displays an up-

kick in current caused by avalanche impact ionization. Compared devices have similar diameter 

d ~ 2.5 nm and length L ~ 0.8-1.1 μm. 

 

Figure 2: Theoretical basis for avalanche behavior of s-SWNT. (A) Schematic band diagram and 

EHP generation under reverse bias conditions. (B) Probability of impact ionization (II) and Zener 

band to band tunneling (BB) vs. electric field along the nanotube, for the diameters and field range of 

interest. (C) Computed density of states (DOS) showing the first four sub-bands. The second band 

begins to fill at |VGS-VT| ~ 5 V and the third at |VGS-VT| ~ 15 V, as pictured. (D) Contact conductance 

of the first three sub-bands under direct injection from the Pd electrode. The arrow indicates 

approximate voltage at which direct injection into the third sub-band becomes significant. Plots (C) 

and (D) obtained for d = 2.5 nm and tox = 100 nm.  

 

Figure 3: Length dependence of impact ionization tail. Measured reverse bias current vs. drain 

voltage (VDS) in vacuum with applied back-gate VGS for two s-SWNTs with similar diameter (d ~ 

2.5 nm) but with device lengths of (A) L ~ 1.3 μm and (B) L ~ 2.3 μm. The onset voltage for the 

avalanche “up-kick” scales as the lateral field and appears independent of VGS.  

 

Figure 4: (A) Temperature insensitivity of impact ionization tail. Measured reverse bias ID-VDS 

curves for a s-SWNT with d ~ 2.2 nm and L ~ 2.2 µm, in vacuum. There is little temperature 

dependence of the avalanche behavior, unlike in other materials. This is attributed to the very small 

temperature dependence of the band gap and the optical phonon emission mean free path in 

nanotubes (λOP,ems calculated for two diameters, following Ref. [4] in the inset). (B) Model including 
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and excluding impact ionization as a second parallel channel which begins to open up at high field 

(see text, also Figs. 1D and 2A). 

 

Figure 5: Diameter dependence of avalanche threshold field, FTH. (A) Current vs. average channel 

field (VDS-IDRC)/L for several s-SWNT diameters. The II threshold is extrapolated from the tail region 

and defined as the field <FTH> at which the current reaches one half the saturation value. (B) 

Extracted average <FTH> vs. 1/d 2. The uncertainty in diameter from AFM measurements is 0.4 nm. 

The slope of the linear fit scales as the ratio between the avalanche energy threshold and the inelastic 

OP emission length, ETH/λOP,ems. Taking ETH ~ 1.26/d eV, the OP emission length is ~15d nm.  
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