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Single-photon excitation of surface plasmon polaritons
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We provide the quantum mechanical description of the excitation of surface plasmon polaritons
on metal surfaces by single-photons. An attenuated-reflection setup is described for the quantum
excitation process in which we find remarkably efficient photon-to-surface plasmon wavepacket-
transfer. Using a fully quantized treatment of the fields, we introduce the Hamiltonian for their
interaction and study the quantum statistics during transfer with and without losses in the metal.

PACS numbers: 03.67.-a, 42.50.Dv, 42.50.Ex, 03.70.+k, 73.20.Mf

The emerging field of plasmonics [1] is experiencing
a considerable increase in interest from researchers in
many areas of the physical sciences [2]. Plasmonic-based
nanophotonic devices in particular have begun to at-
tract a keen interest from the quantum optics commu-
nity for their use in quantum information processing
(QIP) [3, 4, 5, 6]. In order to unlock the potential that
plasmonics at the quantum level can offer, a clear un-
derstanding of the interplay between single-photons and
surface plasmon polaritons (SPPs) is of fundamental im-
portance. Recent studies have focused on various sys-
tems where SPPs and photons interact [4, 5, 6]. How-
ever, a major obstacle has been the low transfer efficien-
cies found at the single-photon level [4, 5], thus a com-
plete quantum description of an efficient transfer process
is highly desirable. With an extensive understanding of
photon-SPP coupling in the quantum regime, we can ex-
pect to open up an array of new applications in QIP,
based on linear and nonlinear plasmonic effects facilitated
by strong electromagnetic field confinement [5, 7].

In this work we provide the first quantum description
of the coupling between single photons and SPPs in a ver-
satile attenuated-reflection (ATR) setup previously used
only for classical SPP generation [8, 9]. This is dis-
tinct from earlier work, such as couplings at rough sur-
faces [10], requiring an entirely different approach. The
Hamiltonian that we introduce is based on a fully quan-
tized treatment of both photon and SPP field modes and
applies to a wide-range of ATR parameters. We find that
remarkably high quantum efficiencies can be reached for
photon-to-SPP transfer. We then establish the extent to
which the excited SPPs preserve the quantum statistics
of the photons as they travel on realistic metal surfaces.
Our work provides significant insights into the physics of
photon-SPP coupling at the quantum level. The methods
developed are well-suited to other coupling geometries.

SPPs are highly confined, nonradiative electromag-
netic excitations associated with electron charge density
waves propagating along a dielectric-metal interface. In
Fig. 1 (a) we show the ATR setup utilized for single-

photon excitation of SPPs. At various points we will
introduce the metal as silver only to illustrate our main
results; the theory developed here fits a far more general
setting. For SPP excitations, due to the collective na-
ture of the electron charge density waves, a macroscopic
picture of the resulting electromagnetic field is appropri-
ate [10]. Upon quantization, SPPs therefore correspond
to bosonic modes. The quantized vector potential in the
continuum limit for SPPs propagating along an air-metal
interface at z = 0 in the x̂ direction, as shown on the
right of Fig. 1 (a), is given by [10, 11] ÂSPP (r, t) ∝
∫∞

0
dω(N (ω)L)−1/2[φ(r, ω)e−iωtb̂(ω) + h.c]. The disper-

sion relation is ω2 = c2k2(ǫm+1)/ǫm with ǫm the permit-
tivity of the metal, N (ω) is a frequency dependent nor-

malization [10] and L is the profile-width [11]. The b̂(ω)’s

(b̂†(ω)’s) correspond to annihilation (creation) operators

which obey commutation relations [b̂(ω), b̂†(ω′)] = δ(ω −
ω′). The mode functions are given by φ(r, ω) = [(ix̂ −
kẑ/ν)e−νzϑ(z) + (ix̂ + kẑ/ν0)e

ν0zϑ(−z)]eik·r, where the
wavevector k = kx̂, ϑ(z) is the Heaviside step function
and the decay of the SPP into the metal (air) is parame-
terized by ν2 = k2−ǫmω2/c2 (ν20 = k2−ω2/c2). For pho-

tons propagating in air in the k̂′ direction (k̂′ = sin θx̂+
cos θẑ, as shown on the left of Fig. 1 (a)), we have [11]

ÂP (r, t) ∝
∫∞

0 dω(ωA)−1/2[eik
′(k̂′·r)e−iωtâ(ω) + h.c].

The dispersion relation is ω = ck′, A is the beam cross-
section and [â(ω), â†(ω′)] = δ(ω − ω′). Here, the SPPs
and photons are transverse magnetic modes. At the
single-photon level only small intensities of the photon
field are involved and any nonlinear terms in the photon-
SPP coupling can be sufficiently neglected [12]. We are
thus led to the following natural linear coupling Hamil-
tonian for the entire system shown in Fig. 1 (a),

ĤS =

∫ ∞

0

dω~ωâ†(ω)â(ω) +

∫ ∞

0

dω~ωb̂†(ω)b̂(ω) (1)

+i~

∫ ∞

0

dω[g(ω)â†(ω)b̂(ω)− g∗(ω)b̂†(ω)â(ω)].

The first and second terms are the photon and SPP fields’
free-energy respectively. The last term, which we denote
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FIG. 1: Single-photon excitation of SPPs using attenuated-
reflection. (a): A photon wavepacket is injected into the
system at a specific angle θ, with a prism mediating an inter-
action between the photon and SPP modes. The minimum
prism size is diffraction-limited. (b): Dispersion relations for
the photon (shaded region) and SPP (curve). The prism en-
ables mode-matching. (c): Two ATR excitation geometries;
(i) Otto and (ii) Kretschmann-Raether, see text for details.
(d): Transfer process for the photon and SPP mode operators.

as Ĥint, describes interactions between the two fields,
where the coupling g(ω) is a function of the system pa-
rameters for a given ATR geometry. In Fig. 1 (b) we
show the dispersion relations for SPPs and photons. As
an example, we choose ǫm = 1−ω2

p/ω
2+δǫrm, where ωp =

1.402× 1016rad/s is the plasma frequency for silver and
δǫrm = 29ω2/ω2

p is a background correction term [13]. Ne-
glecting Ohmic losses, over the ω range of the SPP modes,
k produces a curve which approaches the surface plasma
frequency ωsp, where ǫm = −1. On the other hand, the
x̂ component of k′ for photons in air incident at angle θ
covers the shaded region of Fig. 1 (b). Two ATR geome-
tries that can provide the necessary mode-matching for
coupling photons to SPPs are shown in Fig. 1 (c), de-
noted as (i) Otto (O) [8] and (ii) Kretschmann-Raether
(KR) [9]. Both consist of a prism in layer I with per-
mittivity ǫ1. The O (KR) geometry has air in layers II
and IV (III and IV) with ǫ2 = ǫ4 = 1 (ǫ3 = ǫ4 = 1) and
metal in layer III (II) with ǫ3 = ǫm (ǫ2 = ǫm). In both,
SPPs are excited on the II/III interface, with z → z − d
in φ(r, ω). For the KR geometry: ν ↔ ν0. The thick-
ness l is assumed to be far larger than the decay of the
SPP into the metal (air), i.e. l ≫ ν−1 (ν−1

0 ), making the
effects of layer IV negligible.
With the ATR setup introduced, we can now formulate

the photon-SPP coupling model of Eq. (1). For each ω
in both geometries the coupling can be described by a
transfer matrix T (ω) in the Heisenberg picture [14] as

(

âout(ω)

b̂out(ω)

)

=

(

α(ω) β(ω)
−β∗(ω) α∗(ω)

)(

âin(ω)

b̂in(ω)

)

. (2)

The transfer process is depicted in Fig. 1 (d), where the
commutation relations of the quantum operators â(ω)

and b̂(ω) define the structure of T (ω), while its coeffi-

cients (|α(ω)|2+|β(ω)|2 = 1, ∀ω) are determined from the
overlap of system modefunctions. By solving Maxwell’s
equations across the first three layers shown in Fig. 1 (c),
one finds the modefunctions of the field in layers II
and III: ψ(r, ω) = {[(ϕ1e

−γ2z + ϕ2e
γ2z)x̂ + (ϕ3e

−γ2z +
ϕ4e

γ2z)ẑ]ϑ(z)ϑ(d − z) + [ϕ5e
−γ3zx̂ + ϕ6e

−γ3z ẑ]ϑ(z −
d)}eiκx. Here, the ϕi’s are constants related by bound-
ary conditions at the interfaces, γi = (κ2 − ǫiω

2/c2)1/2

and the dispersion relation κ =
√
ǫ1(ω/c) sin θ. The O

(KR) geometry has ǫ2 = 1 (ǫm) and ǫ3 = ǫm (1) with
ǫm = 1−ω2

p/(ω
2+iωΓ)+δǫm, which now includes a damp-

ing factor Γ for the metal and a complex correction term
δǫm [13]. The complete modefunctions for the three-layer
(3L) system are: Ψ(r, ω) = rψ̃(r, ω)ϑ(−z)+τψ(r, ω)ϑ(z)
where r and τ (|r|2 + |τ |2 = 1) are obtained from Fres-
nel’s relations at the boundaries. However, the ψ̃(r, ω)
are not involved in the coupling due to mode-matching;
they always have a real component of their wavevector
in ẑ. On the other hand, mode-matching can be satisfied
between the two-layer (2L) modefunctions ψ(r, ω) and
the SPP modefunctions by fixing the angle θ correctly.
For instance, by setting κ = k the dispersion lines cross
at θ = sin−1[ǫm/(ǫ1(1 + ǫm))]1/2 in both geometries. In
Fig. 1 (b) we show this for a particular angle θ = 85◦

(2L line). The inset shows that mode-matching over the
entire range of ω can be achieved, for example, using a
prism with ǫ1 = 1.51 and silver with Γ = 6.25×1013rad/s
and δǫm = δǫrm+iδǫim, where δǫim = 0.22 [13]. This range
is important for excitation with a photon wavepacket of
finite width, as we show later, and is not possible in other
excitation schemes such as the grating-type coupler.

In Fig. 1 (d) the b̂in/out(ω) operators are associated

with the in/out SPP modefunctions φ(r, ω) (b̂in(ω) =

b̂(ω)) and âin/out(ω) with the in/out 3L modefunc-
tions Ψ(r, ω). For negligible loss on entry into the
prism medium, we can assume the operator relation
âin(ω) = â(ω). We then have β∗(ω) = −τ [δ(ω−ω′)δ(k−
κ)

∫

dz(N−1/2
1 (ω)φ(r, ω))∗ · (N−1/2

2 (ω′)ψ(r, ω′))] [15].
Several factors permit the use of the mode overlap in the
value of β∗(ω). First, we assume that the SPP modes
experience negligible damping during the excitation pro-
cess, Im(ǫm) ≈ 0, imposing damping effects subsequently
as the SPP propagates. Second, the SPP is assumed to
exit the prism region on a time-scale such that mode-
matching conditions are broken almost immediately af-
ter excitation. This can be achieved by adjusting the
excitation point [16]. Third, as the SPP modefunctions
exist in the region z ∈ (−∞,∞), d must be chosen
such that their decay into the prism is negligible, allow-
ing it to be neglected from their definitions. To check
an acceptable range of d we define a penetration-factor

P = 2/ν0d (2/νd) for the O (KR) geometry and consider
the SPP modes as good approximations for P ≤ 1, where
|φ(r, ω)|2 at z = 0 is less than 2% its maximum value. In
Figs. 2 (a) and (b) we use the example of silver to show
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P over a range of ω and d for the two ATR geometries.
With the above considerations, we can now determine

the coupling g(ω). In order to connect β∗(ω) and g(ω),
we set α = cosΘ and β = eiΦ sinΘ (Θ ∈ [0, π/2],
Φ ∈ [0, 2π]) for each ω and parameter set {d, ǫi, θ}
for a given geometry. The corresponding Hamiltonian
in the Schrödinger picture is Ĥint from Eq. (1) with
g(ω) = eiΦ(ω)Θ(ω) [14]. In Figs. 2 (c) and (d) we use
silver to plot a rescaled coupling, |g̃(ω)| = 2

π |g(ω)|, for
the two ATR geometries, such that |g̃(ω)| = 1 (0) corre-
sponds to a unit (zero) transfer probability of a photon
to an SPP. Figs. 2 (a) and (b) show the optimal |g̃(ω)|
for both geometries satisfy P . 1. In Figs. 2 (e) and
(f) we plot these optimal values and the value of d at
which they occur. The optimal |g̃(ω)| in both geome-
tries rises for increasing ω, reaching an apex, then drops
sharply as ω tends toward ωsp. This behavior is due
to a dominance of the value for τ in β∗(ω) at large ω,
which decreases rapidly due to boundary conditions and
the large θ required for mode-matching. Such excellent
coupling values have been found classically [8, 9], how-
ever, this is the first time a rigorous quantum mechanical

treatment has been achieved, making it possible for us
to determine correctly the quantum efficiency of single-
photon excitation. The coupling g(ω) cannot be deduced
from a classical model of the system.
So far we have focused on single modes of the system.

However, it is important to consider the transfer of a
photon wavepacket, such as in an experiment, to an SPP
wavepacket state. An n-photon wavepacket state is given
by |nξ〉 = (n!)−1/2(â†ξ)

n |0〉, where â†ξ =
∫

dωξ(ω)â†(ω)

with
∫

dω|ξ(ω)|2 = 1 [11]. For simplicity we take a
Gaussian profile ξ(ω) for a wavepacket produced at time
t0 = 0 with bandwidth ∆ω = 2σ

√
2 log 2 and central fre-

quency ω0. We allow ω ∈ (−∞,∞) as ∆ω ≪ ω. For
wavepacket-transfer with negligible deformation, each ω
must have approximately the same g(ω) and θ. This
is satisfied given a small enough bandwidth with slowly
varying g(ω) and θ. For example, using silver with
∆λ = 10nm, one finds that ∆θ rises exponentially from
0.004◦ at 1× 1015rad/s to 14.61◦ at 5× 1015rad/s, which
can be attributed to the dependence of θ on ω (see inset of
Fig. 1 (b)). The couplings show a similar behavior, with
|∆g(ω)| = 0.01 for d optimizing |g(ω0)| at 1× 1015rad/s,
rising to |∆g(ω)| = 0.2 (0.04) at 5× 1015rad/s for the O
(KR) geometry. The large difference is due to the sharper
drop in |g(ω)| for O at high ω. Significant wavepacket
deformation can be avoided by operating at low ω, al-
though at the expense of the coupling. In general, a
narrow bandwidth will provide access to larger couplings
with negligible deformation.
Finally we turn our attention to damping in the metal

as the excited SPP propagates. For the coupling, the
approximation Im(ǫm) ≈ 0 was made for the excited
SPP. However as it travels, finite conductivity of the
metal and surface roughness result in heating and radia-

FIG. 2: Photon-SPP coupling: The left (right) column corre-
sponds to the O (KR) geometry. Panels (a) and (b) depict
the penetration-factor P . Panels (c) and (d) show the behav-
ior of the coupling |g̃(ω)| = 2

π
|g(ω)|. The optimal values of

|g̃(ω)| (dashed line) are displayed in panels (e) and (f) along
with the values of d (solid line) at which they occur.

tive losses respectively [1]; for a reasonably smooth sur-
face, thermal loss is the main source of damping. While
a quantization of the decayed SPP modes can be per-
formed, a mathematically equivalent and simpler model
is the method of arrays shown in Fig. 3 (a) [11]. Here
we introduce a bath of field modes, described by op-
erators ĉi(ω) (i = 1, .., N) separated by ∆x, interact-
ing with the SPP wavepacket as it propagates. In the
limit N → ∞ and ∆x → 0, the SPP operator becomes
b̂Dout(ω) = eiKxb̂out(ω)+i

√

2κ(ω)
∫ x

0
dx′eiK(x−x′)ĉ(ω, x′),

with ĉi(ω) →
√
∆xĉ(ω, x′) and δij → ∆xδ(x′ − x′′).

The array coefficients are chosen such that the bath
modes induce a change in the SPP wavevector k match-
ing that of the complex ǫm, i.e. k → K = (ω/c)[ǫm/(1 +
ǫm)]1/2 = k + iκ(ω), where 2κ(ω) is the loss per
unit length of propagation. We then set the relations
〈ĉ(ω, x′)〉 = 〈ĉ†(ω, x′)〉 = 〈ĉ†(ω, x′)ĉ(ω, x′′)〉 = 0 for
the bath modes at room temperature and the frequen-
cies considered [11]. We assume that the excited SPP
wavepacket with ω0 has a narrow enough bandwidth
such that κ(ω) ≈ κ(ω0) = κ0 and k ≈ k(ω0) + (ω −
ω0)v

−1
G (ω0), with v−1

G (ω0) = ∂k(ω)
∂ω |ω=ω0

. The flux of
SPPs at point x along the metal surface is then sim-
ply fout(t) = 〈b̂D†

out(t)b̂
D
out(t)〉 = e−2κ0x〈b̂†out(tR)b̂out(tR)〉,

where tR = t− xv−1
G (ω0). For an initial SPP wavepacket

with n excitations, 〈b̂†out(tR)b̂out(tR)〉 = n|ξ̃(tR)|2. A de-
tector with efficiency µ [11, 17] operating for time period
[xv−1

G (ω0)− 1/σ, xv−1
G (ω0)+ 1/σ] would measure a mean

SPP-count of 〈m〉 = µ
∫

dtfout(t) = µne−2κ0x. The
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FIG. 3: Damping model for propagating SPPs. (a): Bath
modes interact with the SPP mode as it travels along the
metal. Panels (b) and (c) show the normalized expected
mean SPP-count 〈me〉/n at point x for an n photon-to-SPP
wavepacket transfer via the O and KR geometries respec-
tively.

Photon-to-SPP transfer process must however be incor-
porated for determining the expected mean SPP-count
〈me〉 from an incident n photon wavepacket. The en-
tire process is analogous to an inefficient detection prob-
lem [17] and we have 〈me〉 = µ|β(ω0)|2ne−2κ0x. In
Figs. 3 (b) and (c) we show 〈me〉/n for the ATR ge-
ometries, where µ = 0.65 is chosen as an example of
non-ideal signal extraction using, e.g. a prism and pho-
todetector. The detection of many identical excitations
from a set rate of single photons would be required to
determine 〈me〉.
While the quantum observable 〈me〉 matches well the

behavior of its classical counterpart, the field intensity
I [1], it is not sufficient in an experiment to show that
the SPPs are quantum excitations. We now consider an-
other observable, the zero time-delay second-order quan-
tum coherence function g(2)(0) [11] at a fixed position,
defined as g(2)(0) = 〈 : Î2(t) : 〉/〈 : Î(t) : 〉2. Here, Î is
the intensity of the quantized field operator, : : de-
notes normal-ordering and the expectation value is taken
over the initial state of the field. For a classical field
1 ≤ g(2)(0) ≤ ∞. On the other hand, for an inci-
dent n photon wavepacket g(2)(0) = 〈m(m − 1)〉/〈m〉2,
where 〈m〉 = n

∫ t+T

t dt′|ξ̃(t′)|2 and 〈m(m − 1)〉 = n(n −
1)[

∫ t+T

t
dt′|ξ̃(t′)|2]2, giving g(2)(0) = 1 − 1/n. This al-

ways lies in the classically forbidden region g(2)(0) < 1.
The value of g(2)(0) for an excited SPP wavepacket at
point x can be found by recognizing that the photon-
to-SPP transfer and SPP propagation stages constitute
an array of lossy beamsplitters [17]. At a beamsplit-
ter with loss coefficient η1/2, the quantum observables
〈m〉 → η〈m〉 and 〈m(m − 1)〉 → η2〈m(m − 1)〉. Thus,
the individual losses accumulated cancel, leaving g(2)(0)
surprisingly unaffected. A Hanbury-Brown Twiss type
experiment [18] could be used to measure g(2)(0).

We have provided the first quantum description of the
Photon-to-SPP transfer process for ATR excitation. Re-
markably good quantum couplings over a wide-range of
frequencies were found. We also examined the extent
to which the excited SPPs preserve quantum statistical
properties. The techniques developed here provide key
insights into the formulation of quantum descriptions for
the photonic excitation of SPPs. This work can therefore
be seen as an important starting point for future research
into the design of new quantum plasmonic devices for ap-
plications based at the nanoscale, such as SPP-enhanced
nonlinear photon interactions and SPP-assisted photonic
quantum networking and processing.
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