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Role of reversibility in viral capsid growth: A paradigm for self-assembly
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Self-assembly at submicroscopic scales is an important but little understood phenomenon. A
prominent example is virus capsid growth, whose underlying behavior can be modeled using simple
particles that assemble into polyhedral shells. Molecular dynamics simulation of shell formation in
the presence of an atomistic solvent provides new insight into the self-assembly mechanism, notably
that growth proceeds via a cascade of strongly reversible steps and, despite the large variety of
possible intermediates, only a small fraction of highly bonded forms appear on the pathway.

PACS numbers: 81.16.Fg, 87.16.Ka, 02.70.Ns

Structure formation in self-assembling molecular com-
plexes is a particularly important process, both for na-
ture and nanotechnology [1]. One very familiar example
is the formation of viral capsids, the polyhedral shells
of capsomer particles enclosing the genetic payload of
spherical viruses [2, 3]. The ubiquity of icosahedral sym-
metry among spherical viruses, a design adopted by na-
ture where shells are built by repeated use of just one
or a small number of distinct capsomers, motivates a re-
duced description that avoids the molecular details of
capsomer proteins; the fact that assembly also occurs in
vitro [4, 5, 6] makes it an ideal candidate for simulation.
If self-assembly is indeed governed by general organiza-
tional principles – with important consequences for both
medicine and materials science – they ought to be acces-
sible using simplified models.

There is little direct experimental evidence on the
nature of assembly pathways, and since self-assembly
implies a nonequilibrium state, where predictive the-
ory is absent, simulation has a potentially important
role. Molecular dynamics (MD) modeling of capsid self-
assembly, based on simple structural models, was de-
scribed in Refs. [7, 8]; the model particles retain just
enough detail to ensure meaningful behavior, the two key
features being an effective molecular shape formed out of
soft spheres rigidly packed so particles fit together in a
closed shell, and multiple interaction sites positioned to
stabilize the correct final structure. The focus was on
achieving assembly; pathways were not considered, and
solvent was omitted to reduce computational cost.

The present paper describes MD simulations of self-
assembling particles that incorporate an explicit atom-
istic solvent. Solvent presence aids cluster breakup with-
out subassemblies needing to collide directly, curtails the
ballistic nature of the particle motion ensuring condi-
tions closer to equilibrium, serves as a heat bath to ab-
sorb energy released by bond formation, and maintains
the dynamical correlations of a fluid medium. To antici-
pate the conclusions, self-assembly is found to consist of
a cascade of reversible stages, with a strong preference
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for low-energy intermediate states, eventually leading to
a high yield of complete shells. Paradoxical though it
may seem, reversibility is the key to efficient production.
Even though the present focus is on icosahedral growth –
to lower the computational effort – these features of the
behavior are likely to be entirely general.

An alternative particle-based, solvent-free simulation
[9] treated quasi-rigid bodies made of hard spheres.
Even simpler capsomer representations have been pro-
posed with spherical particles instead of extended cap-
sid shapes, and either directional interactions [10] whose
range exceeds the particle size, or bonding energies de-
termined by local neighborhood rules [11]; solvent is rep-
resented implicitly with stochastic forces. At the other
extreme are the folded proteins of real capsomers; MD
treatment of all-atom models [12] is limited to short tra-
jectories to test stability of prebuilt shells. Capsid struc-
ture has also been studied by a variety of theoretical
methods [13, 14, 15, 16, 17], and experiments have been
interpreted using concentration kinetics [5, 18]; all avoid
addressing the underlying discrete particle dynamics.

The simulations involve triangular particles based on
the design and interactions of Ref. [8], that are expected
to self-assemble into icosahedral shells. Particle shape is
approximated by a rigid set of soft spheres with lateral
faces inclined at 20.905◦ to the normal, as shown in Fig. 1.
There are four interaction sites on each lateral face that
can bond to matching sites on adjacent particles; multi-
ple sites help maintain correct alignment after bonding.
The solvent atoms are identical to the particle spheres;
all experience a soft-sphere repulsion whose parameters
determine the dimensionless MD length and time units
[19] used here. The attractive interaction between bond-
forming interaction sites is harmonic at distances below
rh = 0.3 and inverse-square above rh with range ra = 3;
the overall attraction strength is governed by a param-
eter e. The fact that particle size exceeds interaction
range, although less so than in real capsomers, reduces
the interaction of wrongly positioned particles.

MD methodology is described in Ref. [19]. The sys-
tem consists of 125 000 molecules in a cubic region with
periodic boundaries; most are solvent atoms, but there
are 1875 triangular particles (1.5%), enough to produce
93 full shells; the mean number density is 0.2. Although
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FIG. 1: (Color online) Model particle and the effective trun-
cated pyramidal shape; small spheres denote interaction sites.

particle concentration is much higher than in experiment,
the solvent presence is sufficient to ensure that diffusion
tempers the otherwise ballistic particle motion. Runs of
60 million time steps are typically needed, at a rate of one
million steps per day on a computer with dual 3.6GHz
Intel processors; there are 200 steps per unit (MD) time.
Particle mass, proportional to volume, is 21 times the
solvent atom (with unit mass); having a much smaller
ratio than in actual viruses leads to a reduced assembly
timescale, accessible to MD, without qualitative change
in behavior. Gradual heating by exothermal bond forma-
tion is suppressed by means of a thermostat that main-
tains a temperature of 0.667, corresponding to unit mean
kinetic energy. Runs are initialized by placing particles
and solvent atoms on a lattice with random velocities;
to avoid overlap, particles begin collapsed and expand to
their final shape over the initial 5000 steps. No additional
mechanisms are included, e.g., damping and partial shell
breakup [8], to aid or regulate assembly.
The ability to produce complete shells is the principal

characteristic of the method; since e is the only parameter
varied, coverage of the phase diagram is limited, but this
proves adequate for demonstrating a variety of growth
scenarios. Establishing shell completeness requires iden-
tifying bound clusters [19] and checking the bond net-
work connectivity. There is a certain arbitrariness in the
bond definition. Interaction sites are bonded when less
than 0.6 (= 2rh) apart, a threshold that avoids transient
bond breakage by thermal vibration. Particles are con-
sidered bonded if all four mutual site pairs are bonded,
a state implying alignment; a weaker condition involving
just a single site pair is used to search for loosely linked,
misaligned clusters.
Figure 2 shows how the cluster size distributions, ex-

pressed in terms of mass fractions, evolve with time for
particular e values. The highest observed shell count, 83,
occurs at e = 0.13 and corresponds to a yield of 89%.
Growth curves have a sigmoidal shape; there is an initial
lag until shells appear, followed by a period of rapidly
increasing shell count that ends asymptotically. Further
change, beyond the 60 million steps shown, is extremely
slow. No oversized clusters are observed (although suffi-
ciently large e would lead to mutant forms).
There is a range of e (exemplified by e = 0.13) with

efficient shell production, where small clusters grow to
completion while maintaining an adequate monomer sup-
ply; the details depend on e. At lower e (0.11) there
is practically no growth due to minimal initiation. At
higher e (0.14, and especially 0.15) there is excessive early

growth, resulting in too many monomers being incorpo-
rated into clusters prematurely, and preventing the ap-
pearance of complete shells until monomers are released
by cluster breakup. The monomer disappearance rate in-
creases with e, unlike the more complex e-dependent shell
growth; for smaller e, a finite monomer fraction persists.
While similar overall behavior is seen in reaction kinetics
studies [5], provided nucleation is rate limited, MD needs
no such restriction. Reproducibility is confirmed by re-
peating a run with a different initial state and obtaining
similar results. Figure 3 provides a view of the e = 0.13
system once 80 complete shells have formed.

Any tendency to form loosely linked clusters can be de-
tected by relaxing the bonding criterion to require only
a single interaction site pair. Cluster distributions are
barely affected since bonds that persist eventually be-
come part of a strong (four-pair) bond. Direct visualiza-
tion reveals that adjacent partial shells can appear to be
a single oversized cluster, but their weak binding allows
them to separate with little impact on long-term growth.
Shell stability is tested by extending a run that had al-
ready produced numerous closed shells, after reducing
e to a value where assembly yields only a few dimers.
Residual small clusters promptly vanish, followed by the
gradual disappearance of larger clusters; eventually just
the original closed shells remain, together with the oc-
casional dimer. This implies hysteresis [20], the survival
of complete shells even when conditions become unfavor-
able.

Other aspects of cluster development require further
analysis. While exhaustive shell histories are informative
but not readily summarized, the statistics of event types
as cluster membership changes provide insight into the
process. Figure 4 shows event fractions and mean cluster
lifetimes (lifetimes have broad distributions) for all sizes.
The analysis considers particle configurations during the
first 30 million steps of the run with the highest shell
yield (e = 0.13), spaced every 2000 steps to minimize
merged (e.g., two added monomers that appear as dimer
addition) and missed (e.g., bonds that form and break)
events; clusters present at the end are excluded. The
principal event types are increases and decreases of unit
size (including dimer breakup), and size increases > 1;
others less readily specified (e.g., size decreases > 1) are
grouped together (early in the run, there is slightly more
dimer and trimer growth, and direct visualization reveals
infrequent events such as pentamer bonding).

Reversibility plays a central role; for sizes < 19 there is
considerable dissociation, and for half the sizes breakup
is even more likely than growth. The fact that growth
events are only a fraction of the total enhances the as-
sembly process by providing ample opportunity for the
error correction needed to avoid kinetic traps. Reversibil-
ity also reflects a proximity to equilibrium, with a slight
bias in favor of growth. The consequences of reversibility
have also been considered [21] using reaction kinetics.

Insofar as lifetimes are concerned, pentamers live much
longer than other small clusters; lifetime and growth
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FIG. 2: Cluster size distributions as functions of time (MD units); the distributions, including monomers, are expressed as
mass fractions, and e (attraction strength) values are selected to show the different growth scenarios.

FIG. 3: (Color online) Snapshot of the e = 0.13 system
with 80 complete shells; solvent atoms are shown semi-
transparently, and there are visual artifacts (closed shells that
appear open and particles protruding through walls) due to
periodic boundaries.

probability appear correlated. Nearly complete shells live
longest, but even at size 19 the wait until subsequent shell
closure is only eight times the pentamer lifetime. Cer-
tain growth steps allow incoming particles to bond just
along one face, a state favoring rapid disassembly (as in,
e.g., hexamers), but even more stable intermediates can
lose members. Other results (not shown) are that while
growth probability and lifetime vary with e, the overall
trends are similar, and that mean bond length ranges
from 0.2 for dimers to 0.05 for closed shells.

The nature of the intermediate states along the growth
pathways is an especially notable feature. Table I sum-
marizes a series of measurements at half million step in-
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FIG. 4: Fraction of events producing unit size increases and
decreases, increases greater than unity, and others; mean clus-
ter lifetimes (MD units).

tervals, for e = 0.13, in which clusters are grouped by
bond count (other aspects of cluster geometry are not
considered). There is a strong preference for maximally
bonded (minimal energy) clusters, and all are within two
bonds of maximum. Numbers of possible cluster realiza-
tions – equivalent to the distinct connected embeddings
[22] of triangles in an icosahedron – are included for con-
trast. The majority are loosely bound and never observed
as intermediate states; e.g., while 91.7% of clusters of size
12 are seen to adopt the unique 15 bond form, and the
remainder have 14 or 13 bonds, none of the 446 possible
realizations with fewer bonds are encountered. The effect
of an imposed preference for maximally bonded interme-
diates has been studied with reaction kinetics [23]; in MD
this property emerges naturally from the simulations.
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TABLE I: Intermediate states along the growth pathways:
mean cluster fractions (f) grouped by size (s) and bonds (b);
numbers of distinct cluster realizations (n) are included for
comparison, with the final columns enumerating other real-
izations that are not observed (sizes with unique bond counts
are omitted).

Observed Others

s b n f b n f b n f b n

5 5: 1 0.948 4: 5 0.052

6 6: 1 0.953 5: 13 0.047

7 7: 4 0.979 6: 22 0.021

8 9: 1 0.851 8: 11 0.140 7: 46 0.009

9 10: 3 0.938 9: 27 0.062 8: 79

10 12: 1 0.808 11: 13 0.166 10: 60 0.026 9: 151

11 13: 3 0.931 12: 28 0.069 11-10: 328

12 15: 1 0.917 14: 11 0.073 13: 74 0.010 12-11: 446

13 16: 4 0.876 15: 31 0.105 14: 142 0.019 13-12: 372

14 18: 1 0.802 17: 15 0.198 16-13: 417

15 20: 1 0.825 19: 5 0.146 18: 38 0.029 17-15: 170

16 21: 4 0.915 20: 19 0.068 19: 38 0.017 18: 28

17 23: 1 0.923 22: 7 0.077 21: 12

18 25: 1 0.888 24: 5 0.112

In conclusion, self-assembly at submicroscopic scales,
where atomistic effects become important, is very differ-
ent from inherently unidirectional macroscopic assembly.
MD simulation reveals reversibility along the assembly
pathway, with dissociation often more likely than growth.
Reversibility diminishes the significance of kinetic traps
because escape is accomplished by dissociation. The co-
existence of reversibility and a high error-free yield is a
result likely to have important implications for under-
standing supramolecular assembly in general and capsid
formation in particular.

The author is grateful to A. Zlotnick for helpful dis-
cussion.
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