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The accurate prediction of electronic response properties of extended molecular systems has been
a challenge for conventional, explicit density functionals. We demonstrate that a self-interaction
correction implemented rigorously within Kohn-Sham theory via the Optimized Effective Potential
(OEP) yields polarizabilities close to the ones from highly accurate wavefunction-based calculations
and exceeding the quality of exact-exchange-OEP. The orbital structure obtained with the OEP-SIC

functional and approximations to it are discussed.
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Gaining microscopic insight into the quantum-
mechanical electronic effects that govern energy- and
charge transfer in processes like light-harvesting, charge-
separation in organic solar cells, or the response of
molecular opto-electronic devices would be extremely
beneficial to the understanding of these phenomena.
But the computational complexity of solving the many-
electron Schrodinger equation leaves little hope that
wave-function based approaches can address these prob-
lems any time soon. The formulation of quantum me-
chanics without wavefunction, i.e., density functional
theory (DFT) in the Kohn-Sham framework, is compu-
tationally much more efficient and allows to handle sys-
tems with up to several hundreds of electrons. Therefore,
it appears as the ideal tool for investigating the above
mentioned problems. However, the predictive power of
DFT calculations depends crucially on the approxima-
tions made in the description of the exchange-correlation
effects. Structural, ground-state molecular properties
are obtained with reasonable to excellent accuracy us-
ing standard, explicit density functionals like the Lo-
cal Spin Density Approximation (LSDA) or Generalized
Gradient Approximations (GGAs). But these function-
als notoriously fail in the description of charge transfer
processes |1, 2] and associated problems like predicting
the response [3] or transport [4] properties of extended
molecular systems. There is, thus, a serious need for
exchange-correlation approximations that allow to calcu-
late response properties like polarizabilities of extended
systems reliably on a quantitative scale and with bear-
able computational costs.

It has been demonstrated that improvements in the
density-functional description of the response of conju-
gated polymers can be achieved based on current den-
sity functional theory [5] and related ideas [6], or by in-
corporating full [3, 7, [8] or partial |9] exact exchange.
It has also been argued that correlation effects play a
non-negligible role in the proper description of response
properties [10]. However, evaluating the Fock integrals
in exact exchange approaches increases numerical costs
substantially, and the computational complexity of ap-

proaches using exact exchange with “compatible” corre-
lation is significant [11].

In this manuscript we demonstrate that these prob-
lems can be overcome with a self-interaction correction
(SIC) employed rigorously within Kohn-Sham theory. In
the SIC-scheme, only direct, i.e., self-exchange integrals
need to be evaluated, thus computational costs are low-
ered. OEP-SIC yields highly accurate results for the re-
sponse of extended molecular systems without involving
empirical parameters.

The first “modern” SIC was proposed by Perdew and
Zunger as a correction to LSDA [13]. They devised the
LSDA-SIC functional
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where ELSPA is the LSDA exchange-correlation energy
functional, Ey the Hartree (classical Coulomb) energy,
n4 and n) the up- and down-spin densities, respectively,
N; and N} the numbers of occupied spin-orbitals, and
n;, the orbital spin densities. Eq. () is not the only
way in which a SIC can be defined [14], but it is plau-
sible and straightforward: The spurious self-interaction
effects that are contained in the Hartree energy and the
LSDA functional are subtracted on an orbital-by-orbital
basis. However, a subtlety is buried in this seemingly
simple equation: The functional depends on the orbitals
explicitly, i.e., it is not an explicit density functional. The
traditional way of approaching this problem has been to
minimize the total energy with respect to the orbitals
[13, [15, [16]. This approach is within the realm of the
Hohenberg-Kohn theorem, but it is outside the founda-
tions of Kohn-Sham theory: minimizing with respect to
the orbitals leads to single-particle equations with or-
bital specific potentials instead of a global, local Kohn-
Sham potential for all orbitals. But the existence of
a common, local potential is one of the features that
makes Kohn-Sham DFT attractive: Only with a local
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potential is the non-interacting kinetic energy density a
well-defined density functional, a local potential consid-
erably simplifies numerical efforts, it facilitates the inter-
pretation of results, and it yields not only corrected oc-
cupied eigenvalues, but also corrected unoccupied ones.
But on the other hand, Perdew-Zunger SIC [13] has be-
come popular in some areas of solid state physics ex-
actly for the reason that it does not work with one com-
mon local potential but with several orbital specific ones,
because orbital specific potentials straightforwardly al-
low to take into account orbital localization effects: SIC
with orbital-specific potentials can treat, e.g., p- and d-
orbitals of a crystalline solid on a different footing. In
this way, Perdew-Zunger SIC can naturally distinguish
between localized and delocalized states. In order to ben-
efit from the advantages of working with a local poten-
tial without loosing the ability to describe localization
effects, schemes have been devised which make use of the
fact that Eq. () is not invariant under transformations
of the orbitals that change the individual orbital densi-
ties but leave the total density unchanged. Calculating
orbitals from a common Hamiltonian and then subject
these orbitals to localizing transformations has proved to
be a successful scheme for solids |21, 22] and molecules
[23, 124, 25).

However, localizing orbital transformations can be-
come computationally involved in large finite systems
and in time-dependent calculations. Therefore, yet an-
other variant of the SIC has become popular. It uses
the Krieger-Li-Iafrate (KLI) construction [12] to obtain
the KLI-potential corresponding to Eq. () and evaluates
Eq. (@) directly with the KLI orbitals |17, [18, [19, [20].
This approach has been justified as an approximation to
the OEP-version of SIC (OEP-SIC), which is defined by
evaluating Eq. () with the orbitals obtained from the
SIC Kohn-Sham potential that follows from the Opti-
mized Effective Potential (OEP) formalism |11]. But to
the best of our knowledge, the performance of the OEP-
SIC approach itself has remained largely unexplored, and
tests of the KLI-SIC approach were restricted to spheri-
cal atoms [17]. In this manuscript we demonstrate that
OEP-SIC, but not KLI-SIC, allows to predict electric re-
sponse coeflicients of molecular systems very reliably and
may thus become an important tool to investigate charge-
transfer questions.

One of the most demanding tests of a functional’s abil-
ity to adequately describe charge transfer is calculating
the polarizability of hydrogen chains. It has been shown
that obtaining the response of hydrogen chains correctly
is even more difficult than obtaining the response of real
polymers like polyacetylene [|5]. Therefore, calculating
the polarizability of hydrogen chains has become a bench-
mark test for many-particle approaches from both the
density functional [3, |5, 6, |7, |8] and the wave-function
worlds [28, [29]. Since a response quantity like the po-
larizability determines how a system reacts to a field

that induces a density shift, calculating the polarizabil-
ity also probes the ability to correctly describe charge
transfer. As a second, positive side effect, investigating
hydrogen chains also allows us to address the question of
size-consistency of the OEP-SIC functional [13, 126, 27].

Our calculations are based on a real space approach
[30] which we employed to calculate the ground-state of
hydrogen chains with alternating interatomic distances
of 2 and 3 ag using KLI-SIC. From the converged KLI-
SIC solution we calculated the true OEP following the
iterative procedure described in [31], which is more cum-
bersone for the SIC-LDA functional than for pure ex-
change, but does converge. The ground-state calcula-
tions (no electrical field applied yet) lead to a remark-
able result. For the sake of clarity we discuss it using
the specific example of the shortest chain, Hy. The KLI-
solution is spatially symmetric as expected and as de-
picted in the left part of Fig. [l It is also manifestly
spin-unpolarized, i.e., the self-consistent KLI iteration re-
turns to a spin-unpolarized solution from a spin-polarized
starting guess. But starting from the spin-unpolarized
KLI solution and iterating the OEP to self-consistency
without restriction on the spin polarization, we observe
a spontaneous change in symmetry. After a few iterations
of the OEP self-consistency cycle, the up- and down-spin
orbitals separate and each orbital starts to center around
one nucleus. For the interatomic distances of 2 and 3 ag
frequently used in the literature [3, I8, 128, 132], the effect
is moderate but clearly visible, as shown in the middle
of Fig. (). If the interatomic distances are increased
further, e.g., to 2.5 and 3 ag as shown in the right part
of Fig. (), the orbital localization becomes pronounced
and one can undoubtedly associate one orbital with one
nucleus. This effect is not only observed for Hy, but also
for the other hydrogen chains we studied.

A conclusion from this finding is that the KLI-SIC po-
tential is not necessarily a good approximation to the
OEP-SIC potential. In order to understand this one
should recall that the KLI-potential is justified as a mean-
field approximation [11), 12, 19]: The difference between
the true OEP and the KLI-potential is a term of the kind
(1/n(r))V - f(r), where f(r) is a well defined function
depending on the full spectrum of Kohn-Sham orbitals.
Averaged over the density, the term vanishes |12, [19].
But implicitly this mean-field argument assumes that the
“averaged” term has little influence in the self-consistent
iteration so that the density obtained with and without
the neglected term are very similar. However, our calcu-
lations show that this is not the case for the SIC func-
tional: taking into account the term that is neglected in
the KLI potential drives the self-consistent iteration to
a very different solution. This is possible because the
neglected term contains all orbitals and is thus relevant
for unitary (in)variance and greater variational freedom.
The breakdown of the KLI-SIC approximation may be
a surprise in view of its good performace for atoms |17,
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FIG. 1: Left: Orbital densities of Hs with interatomic distances of 2 and 3 bohr (ag), respectively, obtained from self-consistent
KLI-SIC calculation. Up- and down-spin orbitals are identical. Middle: Spin-orbital densities for the same system obtained

from self-consistent OEP-SIC calculation.

Right: Spin-orbital densities of Hs with interatomic distances of 2.5 and 3 ao,

respectively, obtained from self-consistent OEP-SIC calculation. The orbital localization increases with increasing interatomic

distance.

but appears less surprising in view of other drawbacks
[34].

The hydrogen chain ground-state results also naturally
trigger thoughts about the bulk limit that one would
reach by adding ever more atoms. We briefly want to
ponder this case. Recall that for an infinite lattice of hy-
drogen atoms with a lattice constant that tends to infin-
ity, the exact Kohn-Sham orbitals are delocalized Bloch
orbitals for which the self-interaction correction vanishes
on a per-atom basis [13]. Using such orbitals in Eq. ()
yields the (wrong) uncorrected LSDA energy. Inherent
to the logic of this argument is a certain order of taking
the two “infinity limits”: first the number of atoms tends
to infinity, i.e., an infinite lattice is built, and then the
lattice constant is made ever larger.

Our calculations suggest that a different result is ob-
tained if the order of taking these two limits is inter-
changed. For finite systems of largely separated hydro-
gen atoms, our OEP-SIC calculations lead to localized or-
bitals and thus, a self-interaction corrected energy. Now
imagine building up an ever larger lattice of hydrogen
atoms with ever larger interatomic separation by adding
atoms to a finite starting system. At each step of this
buildup process, one will be dealing with a large but fi-
nite system. Our calculations suggest that at each stage
of the build-up process, OEP-SIC will yield localized or-
bitals and thus a self-interaction corrected energy. This
idea is in line with earlier findings that revealed that it
makes a great difference whether the surface of an ex-
tended system is explicitly taken into acoount or not
[33]. In any case our results show that OEP-SIC can
yield localized orbitals that differ greatly from the KLI
orbitals. How strong the OEP-SIC localization is will
depend on the specific system. Generally speaking, we
expect localization effects to be even more pronounced
in SIC schemes using orbital dependent potentials [13] or
orbital localizing transformations [21), [22, 23, 124, 125].

With the ground-state structure of OEP-SIC discussed
we come to the most important aspect of this manuscript,

the calculation of the electrical response. As a first test
we calculated the response of the two dimers Nag and Na,
which can be seen as representing the “extreme ends” of
dimer bonding with a soft single and a strong triple bond,
respectively. The OEP-SIC polarizability (tensor aver-
age in a3) is obtained as 274 for Nay (KLI-SIC performs
similar) and 10.3 for N (no convergence for KLI-SIC).
The value for the sodium dimer compares favorably with
the most recent experimental result of 270 [35], the value
for the nitrogen dimer is too low but not unreasonable
[36]). Tt is a noteworthy observation that OEP-SIC in-
creases the polarizability (by 12%) for Nag (where LDA
underestimates) while it decreases it (by 18%) for Na
(where LDA overestimates), i.e., it works “in the right
direction” in both systems. OEP-SIC also yields greatly
improved eigenvalues. For CHy, e.g., OEP-SIC yields
Egg}{\’/l—osm = 14.56 eV, which compares much better with
the experimental ionization energy of 14.42 eV than the
LDA value e524( = 9.52 eV.

The true and most important test is how OEP-SIC per-
forms for the response of extended systems where semilo-
cal functionals fail badly. This is tested by calculating
the response of the hydrogen chains. The Kohn-Sham
SIC longitudinal static electric polarizabilities obtained
from an accurate finite field approach [37] are shown in

Hy He¢ Hs Hio His
LSDA 376 73 115 162 211

KLI-SIC 19.4 60.3 98.2 131.7 193.6
OEP-EXX 322 56.6 84.2 n/a 138.1
OEP-SIC  30.6 48.7 80.1 98.8 129.8
MP4 295 51.6 759 n/a 126.9

TABLE I: Longitudinal polarizability of hydrogen chains in a3

obtained with different exchange-correlation approximations.
Mgller-Plesset- (MP4) results taken from [3&], exact-exchange
OEP (OEP-EXX) from |8]. KLI polarizabilities were calcu-
lated from the dipole moment, see discussion in [37].



Table[ll together with LSDA, exact-exchange OEP (OEP-
EXX), and fourth-order Mgller-Plesset perturbation the-
ory (MP4) results. The MP4 results are close to the exact
values and serve as the quasi-exact benchmark. The first
observation is that the KLI-SIC results vary unsystemat-
ically — the polarizability of Hy is substantially underes-
timated, whereas the polarizability of all other chains is
overestimated. Comparison with OEP-EXX and LSDA
shows that KLI-SIC improves over LSDA, but is less ac-
curate than exchange-only theory. The picture changes
when SIC is employed with the true, self-consistent OEP
instead of with the KLI-approximation: KLI-SIC and
OEP-SIC polarizabilities are rather different. Compar-
ing OEP-SIC to the wavefunction based results shows
that OEP-SIC polarizabilities are within a few percent
of the MP4 results in all cases and are noticeably closer
to the MP4 values than the exchange-only OEP results,
which up to now represented the best density functional
results for such systems.

One may wonder why the SIC functional, in which lo-
calization of the orbitals plays an important role, and
exact exchange, which is unitarily invariant and thus in-
dependent of orbital localization, can both lead to a rea-
sonable description of the chain response. The solution
lies in the interpretation of the exchange part of the SIC
functional: The Hartree self-interaction correction corre-
sponds to the self-exchange part of the EXX functional,
and it is well known that the diagonal (self-)exchange
integrals are the dominant part of exchange, i.e., they
are noticeably larger than the off-diagonal exchange in-
tegrals. The larger the diagonal “classical” parts of the
exchange energy are in comparison with its off-diagonal
parts, the more accurate becomes the SIC description
which neglects the off-diagonal parts. Since the diago-
nal parts are typically maximal for localized orbitals, it
becomes clear why localized orbitals are crucial in the
SIC-approach. So from this perspective, SIC takes into
account the most important part of EXX at the cost of
needing to employ localized orbitals, but with the huge
benefit of greatly reducing the number of exchange inte-
grals that have to be evaluated. In addition, SIC offers
an improvement over bare EXX that can be attributed
to the non-EXX parts of the functional. Following [3]
one can also show that the improved OEP-SIC polar-
izabilities stem from a field-counteracting-term in the
response-part of the exchange-correlation-potential [39)].
Thus, OEP-SIC is an approach which allows to reliably
investigate the electrical response of a broad range of
molecular systems.

Note added after submission: We learned of studies
by Pemmaraju, Sanvito, and Burke, and Ruzsinszky,
Perdew, Csonka, Scuseria, and Vydrov, which also find
that SIC improves the response.
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