
Flexural Phonons in Free-Standing Graphene

Eros Mariani and Felix von Oppen
Institut für Theoretische Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany

(Received 13 August 2007; published 20 February 2008)

Rotation and reflection symmetries impose that out-of-plane (flexural) phonons of freestanding
graphene membranes have a quadratic dispersion at long wavelength and can be excited by charge
carriers in pairs only. As a result, we find that flexural phonons dominate the phonon contribution to the
resistivity � below a crossover temperature Tx where we obtain an anomalous temperature dependence
� / T5=2 lnT. The logarithmic factor arises from renormalizations of the flexural-phonon dispersion due to
coupling between bending and stretching degrees of freedom of the membrane.
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Introduction.—The experimental realization of mono-
layers of graphite, termed graphene, has opened new hori-
zons in the physics of two-dimensional electron systems
(2DES) [1,2]. Unlike conventional 2DES, the low-energy
electronic band structure of graphene [3–5] is described by
a massless Dirac equation with velocity v. The 4� 4
matrix structure of the Dirac equation reflects the two
sublattices of the graphene honeycomb lattice in combina-
tion with a valley degeneracy due to the presence of two
Dirac cones within the Brillouin zone. Pioneering experi-
ments on this novel two-dimensional electron system have
shown that the Dirac nature of carriers induces an anoma-
lous integer quantum Hall effect as well as a finite con-
ductivity at vanishing carrier density [1,2].

Recently, it has become possible to experiment on free-
standing graphene sheets [6,7] which provide a realization
of a two-dimensional (2D) solid. Studies of the stability of
2D solids against thermal fluctuations date back to early
works by Peierls and Landau [8,9] who pointed out the
absence of true long-range translational order. Much later,
it was understood [10] that nevertheless, quasi-long-range
translational order can persist up to a finite-temperature
Kosterlitz-Thouless transition. While these works focus on
in-plane lattice distortions, freestanding membranes also
support out-of-plane ones. It is believed that there is a low-
temperature flat phase even in the presence of out-of-plane
distortions [11], which gives way to a crumpled phase at
high temperatures [12].

Within the low-temperature flat phase, in-plane, and out-
of-plane long-wavelength distortions can be described by
the elastic Lagrangian density [11,13],
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in terms of the mass density �0, the out-of-plane distortions
h�r�, the in-plane ones u�r� and the strain tensor uij �

1
2 �

�@iuj � @jui � �@ih��@jh��. The elastic constants � and �
characterize the in-plane rigidity of the lattice, �0 the
bending rigidity. Both the absence of a �rh�2 term in
Eq. (1) and the appearance of the out-of-plane distortions

h�r� in the strain tensor are consequences of the rotational
symmetry of the membrane in the space.

The elastic Lagrangian in Eq. (1) shows a distinct dif-
ference between in-plane and out-of-plane (flexural) pho-
nons. Indeed, to quadratic order in the displacements h�r�
and u�r�, both longitudinal and transverse in-plane pho-
nons have a linear dispersion !�l�q � v�l�q and !�t�q � v�t�q
with group velocities v�l� � ��2�� ��=�0�

1=2 and v�t� �
��=�0�

1=2. In contrast, due to rotational symmetry, flexural
phonons obey a quadratic dispersion!�h�q � �q2 with � �
��0=�0�

1=2. In-plane and flexural phonons also differ in
their coupling to the charge carriers in graphene. While the
coupling is conventional for in-plane phonons, the re-
flection symmetry h! �h demands that out-of-plane
displacements enter only quadratically into the Dirac
Hamiltonian. Consequently, charge carriers can excite
flexural phonons only in pairs.

Because of these differences, we find that flexural modes
dominate the phonon contribution to the resistivity of free-
standing doped graphene membranes below a crossover
temperature Tx. The transport scattering rate of Dirac
fermions diverges logarithmically for a strictly quadratic
dispersion of flexural modes. This divergence is cut off by
the coupling between bending and stretching degrees of
freedom captured by the Lagrangian in Eq. (1). At finite
temperature, this coupling renormalizes the bending rigid-
ity of the membrane, inducing a stiffening of the flexural-
mode dispersion at long wavelengths. Including this phys-
ics within a simple one-loop RG, we find that the contri-
bution of flexural phonons to the resistivity of graphene
membranes scales as T5=2 lnT.

Graphene.—The band structure of graphene is well
approximated by the tight-binding Hamiltonian

 H � �t
X
hiji

�cyi cj � c
y
j ci� (2)

on a honeycomb lattice. Here, t is the hopping matrix
element, ci annihilates an electron on lattice site i, and
only nearest-neighbor hopping has been included. The 2D
hexagonal lattice consists of two identical sublattices A and

PRL 100, 076801 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
22 FEBRUARY 2008

0031-9007=08=100(7)=076801(4) 076801-1 © 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.100.076801


B, and thus two sites per unit cell. We denote the vectors
connecting a B site with the neighboring A sites as e1 �

a��1; 0�, e2 � a�1=2;
���
3
p
=2�, and e3 � a�1=2;�

���
3
p
=2�

where a is the bond length. The band structure of the
Hamiltonian in Eq. (2) has zero energy (corresponding to
the Fermi energy at half filling) at two inequivalent points
in the Brillouin zone, which we choose to be at k	 �
	kD, with kD � 2�=�3

���
3
p
a��

���
3
p
; 1�. In the vicinity of

these Dirac points, the spectrum is described by the 4�
4 Dirac Hamiltonian

 H � @v� 
 k (3)

with velocity v � 3ta=2. The 2D wave number k is mea-
sured from the Dirac point. The Hamiltonian in Eq. (3) acts
on four-component spinors (u�A;k, u�B;k, u�B;k, u�A;k) of Bloch
amplitudes in the space spanned by the sublattices (A=B)
and Dirac points (�=�). The matrices �x;y � �z � �x;y
denote components of a vector �. (�i and �j are Pauli
matrices acting in the spaces of the Dirac points and the
sublattices, respectively.) It is also useful to introduce a
corresponding vector � by �x;y � �x;y � �z and �z �

�z � �0 [14].
Electron-phonon coupling.—The dominant electron-

phonon coupling arises from distortion-induced modifica-
tions of the bond lengths and hence the hopping amplitude
[15–18]. The electron-phonon coupling can then be de-
scribed in terms of a fictitious gauge field A�r� entering
into the Dirac Hamiltonian, H � v� 
 �p� eA�r; t��,
where p denotes the momentum. In terms of the strain
tensor uij, the gauge field A�r� takes the form [19]

 eA�r; t� � �z � 1
@

t
@t
@a
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" #
: (4)

The combination of components of the strain tensor enter-
ing into A�r� reflects the symmetry of the underlying
honeycomb lattice. The factor of �z implies that the
associated fictitious magnetic field points in opposite di-
rections at the two Dirac points, as required by time-
reversal symmetry. From the definition of the strain tensor,
we conclude that electrons couple linearly to the in-plane
phonons and quadratically to flexural ones. Figure 1 shows
the corresponding electron-phonon vertices.

At sufficiently low temperatures, only long-wavelength
phonons contribute to the resistivity and scattering be-
tween different Dirac cones can be neglected. Thus, we
can restrict attention to the vicinity of, say, the Dirac point
k� where the Hamiltonian reduces to a 2� 2 Hamiltonian
in the A� B sublattice space.

The electron-phonon coupling Hep corresponding to
Eq. (4) can be expressed in second quantization formalism
after expanding the in-plane and out-of-plane distortions
into Fourier series as u�r� �

P
quqeiq
r and h�r� �P

qhqe
iq
r, decomposing uq into longitudinal and trans-

verse components,

 u q � u�l�q q̂� u�t�q ẑ� q̂; (5)

and quantizing the amplitude of the distortions as

 u���q �

����������������
@

2M!���q
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���y
�q �: (6)

Here M is the atomic mass and a���q the annihilator of a
phonon of type � (� � l, t, h) with wave number q. Thus
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in terms of the coupling terms
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where 
 � �3a=4�@t=@a, cB;k is the annihilator of an elec-
tron in a Bloch state of sublattice B and wave-vector k, and
� (�0) the angle of q (q0) with respect to the x axis.

Thus we reach an interesting competition: In-plane pho-
nons are strongly coupled to electrons (the vertex is first
order in the phonons) but their linear dispersion yields a
linearly vanishing density of states at small energy. In
contrast, flexural phonons are weakly coupled to electrons
(their vertex is second order in the phonons) but their
dispersion is quadratic with constant density of states. In
the following, we quantitatively analyze the consequences
of this competition for the temperature dependence of the
resistivity. The latter is determined by

 � �
2

e2v2�F

1

�tr
(9)

a) b)

FIG. 1. Electron-phonon vertices. (a) Coupling of electrons to
in-plane phonons. (b) Coupling of electrons to flexural phonons.
Straight lines correspond to electrons, wavy (dashed) lines to in-
plane (flexural) phonons.

PRL 100, 076801 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
22 FEBRUARY 2008

076801-2



(�F is the electronic density of states at the Fermi level) in
terms of the transport scattering rate

 

1

�tr
�

2�
@

X
f

jMfij
2�1� cos
�	�Ef � Ei 	 @!� (10)

of Dirac fermions due to absorption (or emission) of pho-
nons. Here, 
 is the scattering angle of the fermions, jii and
jfi the initial and final scattering states, Ei and Ef the
initial and final electronic energies, @! the energy of the
absorbed (emitted) phonons, and Mfi � hfjHepjii.

We consider the doped regime EF�� 1 (here 1=�
denotes the total scattering rate due to disorder and phonon
scattering), where electronic transport can be described
quasiclassically and employ the conventional quasielastic
approximation (valid when EF � kBT) of neglecting the
phononic contribution to energy conservation, as the typi-
cal phonon energies are small compared to EF. Moreover,
we focus on sufficiently low temperatures so that we can
restrict attention to the quadratic (linear) region of the
dispersion of flexural (in-plane) phonons.

The phonon contribution to the resistivity is typically a
small correction to a dominant disorder contribution.
Nevertheless, its temperature dependence makes the
phonon-induced resistivity experimentally discernible
[20] from the T-independent disorder one [21].

Flexural phonons.—Scattering of Dirac fermions by
flexural phonons requires absorption (or emission) of
two phonons, say with wave numbers q and q0. Thus,
the corresponding initial and final scattering states are
jii � jk; �i � jn�h�q i and jfi � jk� q� q0; �0i �
jn�h�q � 1; n�h�q0 � 1i, where n�h�q � �exp�@!�h�q =kBT� �

1��1 denotes the Bose distribution function of the flexural
phonons and jk; �i � 1=

���
2
p
��e�i�cyA;k � c

y
B;k�jvaci is a

Dirac fermion state with momentum k and chirality �.
(Here, � is the angle between k and the x axis and jvaci

is the electronic vacuum). Thus, jMfij
2 � jV�h�q;q0 j

2�1�

��0 cos��� �0 � 2�� 2�0��=2. The summation over fi-
nal states requires integration over q and q0, while averag-
ing over the direction of the incoming electron will
suppress the oscillatory term in jMfij

2. Using a���q jn
���
q i �

�n���q �
1=2jn���q � 1i, Ei � @vk � EF, and Ef � @vjk�

q� q0j, we obtain

 

1

��h�tr

�
X
q;q0

�jV�h�q;q0 j
2

@
�1� cos
�n�h�q n
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where �q�q0 � @vjk� q� q0j � EF and jV�h�q;q0 j
2 �

@
2
2=�16M2�2� is independent of wave numbers due to

the quadratic dispersion of flexural phonons. The rate in
Eq. (11) is formally singular at small q, q0 since both Bose
distributions diverge as T=q2. Rescaling momenta by

����
T
p

and introducing a cutoff qc at small wave numbers (to be
specified below), we obtain the scattering rate
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where C��� � 
2
@k4

F=�4�0EF@!
���
kF
�. The unusual T5=2

scaling implies that scattering from flexural phonons domi-
nates the phonon contribution to the resistivity at low
temperatures. Indeed, the conventional phonon contribu-
tion to the resistivity due to in-plane phonons scales as T4,
which is the direct two-dimensional analog of the T5 law in
bulk solids.

Equation (12) shows that the scattering rate from flexu-
ral phonons diverges logarithmically for a strictly qua-
dratic phonon dispersion. For clean elastic membranes, a
low-momentum cutoff arises from the coupling terms be-
tween bending and stretching degrees of freedom of the
membrane which are included in the Lagrangian equa-
tion (1). These lead to long-wavelength corrections to the
elastic constants and hence the phonon dispersions [11].
Indeed, it is these renormalizations that are responsible for
the stability of the flat phase at low temperatures.

In order to study the renormalization of the bending
rigidity by the coupling of bending and stretching modes,
we integrate out the in-plane distortions in Eq. (1) and
obtain an effective energy functional for the flexural modes
alone [11],

 F �
1

2

Z
dr
�
�0�r

2h�2 �
K0

4
�P?���@�h��@�h��

2

�
; (13)

where K0 � 4���� ��=�2�� �� and P?�� �
�
�l
�k@l@k�=r

2 is a transverse projector. This effective
energy functional contains a four-leg interaction between
flexural distortions. Treating this quartic term to one-loop
order (depicted in Fig. 2) in a conventional momentum-
shell RG, one obtains the flow equation

 

d�
dq
� �

3

16�
K0kBT

�q3 ; (14)

with q denoting the running shell wave vector.
The flow equation Eq. (14) is readily solved, and the

resulting scaling of � with q is

 ��q� � �0

����������������������
1� q2

c=q2
q

(15)

in terms of the temperature-dependent momentum scale
qc � �3K0kBT=�8��2

0��
1=2. Thus, the flexural-phonon dis-

persion is quadratic for q� qc. In contrast, for q
 qc,
thermal fluctuations effectively stiffen the membrane and,

FIG. 2. One-loop correction to the bending rigidity due to the
effective interaction between flexural modes.
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within the simple one-loop analysis presented here, we find
a renormalized dispersion!�h�q
qc � ��0qc�

1=2q3=2. It is this
renormalization of the flexural-phonon dispersion at
long wavelength which removes the singularity in the
phonon scattering rate Eq. (12). We therefore identify the
low-momentum cutoff qc entering into Eq. (12) with this
momentum scale.

As a result, we find that the temperature cancels from the
argument of the logarithm in Eq. (12). This analysis is
approximate in that it is restricted to one-loop order and
that it neglects the flow of the elastic constants for stretch-
ing deformations. While the stiffening against bending
deformation would survive inclusion in a more refined
treatment, the precise power-law dependence of qc on
temperature would change. As a result, the argument of
the logarithm would become temperature dependent, re-
sulting in an overall T5=2 lnT scaling of the flexural-phonon
contribution to the resistivity.

Crossover temperature.—In order to estimate the cross-
over temperature Tx below which phonon scattering of
Dirac fermions is dominated by flexural modes, we note
that an analogous calculation yields
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����tr
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@!���kF
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(16)

for the transport scattering rate from in-plane phonons
(� � l, t). Thus, the crossover temperature obtained from
a comparison of Eqs. (12) and (16) becomes

 Tx �
1

kB

�
ln�kBT=@!

�h�
qc �

8�2��2
@!�t�5kF

�0�@!
�h�
kF
�5=2

�
2=3
; (17)

independent of the Fermi energy (i.e., the doping level)
within the considered doped regime. With typical parame-
ters for graphene [23], we obtain Tx ’ 70 K, yielding a
significant temperature range over which our predictions
for the resistivity can be experimentally tested.

Conclusions.—For clean graphene membranes, long-
wavelength renormalizations of their elastic properties
due to thermal fluctuations are crucial in order to obtain
a finite transport scattering rate and hence resistivity con-
tribution � / T5=2 lnT from scattering by flexural phonons.
In the presence of disorder, the elastic properties of the
membrane are renormalized even at zero temperature
[24,25]. Indeed, the recent experimental observations of
rippling [6] suggest that disorder, inside or close to the 2D
membrane, exists in present graphene membranes. Such
disorder-induced renormalizations of the elastic moduli
may compete with the renormalizations by thermal fluctu-
ations and lead to a temperature-independent saturation of
the cutoff qc at low temperatures. A detailed study of the
effects of disorder in this context remains an important
topic for future research.
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